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Plan du cours

1 Avant propos

2 Rappels : Régime Sinusoïdal Permanent

3 Outils mathématiques : Étude de la Fonction de Transfert

4 Outils mathématiques : Diagramme de Bode des fonctions simples
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Avant propos

Pré-requis

Manipuler les opérations de base, les fractions ;

Manipuler les nombres complexes ;

Utiliser les lois fondamentales et théorèmes généraux de l’électricité ;

Contenu et objectifs

Première partie : Filtres actifs de premier et second ordre
Deuxième partie : AOP en régime non linéaire (RNL) et défauts

Déroulement du module (22,5 heures)

Cours

Séances de TD

Évaluations : DS, DM...
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Contexte

Chaîne d’acquistion
Définition : Une chaîne d’acquisition est un système électronique qui recueille les informations néces-
saires à la connaissance et au contrôle d’un procédé ; elle délivre ces informations sous une forme
appropriée à leur exploitation.

Elle est composée de différents blocs fonctionnels :

Extraction de l’information : capteur (Physique)

Conversion en signal utile : conditionneur (Électronique)

Traitement analogique du signal : amplificateurs (d’instrumentation) et

Électronique de mise en forme

Phenomene

physique

Grandeur
Capteur

Signal brut
Conditionneur

Signal utile
Amplificateur Filtre

Electronique

de mise

en forme
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Régime Sinusoïdal Permanent

Régime Sinusoïdal Permanent
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Composants passifs en RSP (1/2)

Pour rappel, les trois composants peuvent être utilisés avec différentes relations courant/tension :

DC

temporel

sinusoïdal

Résistance

R
iR

vR

vR (t) =

ZR (ω) =

Capacité

C

iC

vC

iC (t) =

ZC (ω) =

Inductance

L
iL

vL

vL (t) =

ZL (ω) =
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Composants passifs en RSP (2/2)

En sinusoïdal, et aux limites, les composants et leurs modèles deviennent :

ω → 0

ω → ∞

Résistance

R
iR

vR

ZR =

ZR =

Capacité

C

iC

vC

ZC →

ZC →

Inductance

L
iL

vL

ZL →

ZL →
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Quadripôles en RSP

Du point de vue fonctionnel, on peut toujours étudier un circuit à 1 entrée/sortie
en utilisant l’approche vue sur les quadripôles :

I1(jω) I2(jω)

V1(jω) V2(jω)

et on peut exprimer en complexe (C) les propriétés habituelles :

l’impédance d’entrée Zin(jω) (et non plus la résistance d’entrée),

l’impédance de sortie Zout (jω) (et non plus la résistance de sortie),

le gain
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Outils mathématiques : Étude de la Fonction de Transfert

Étude de la Fonction de Transfert
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Fonction de Transfert

Généralités
On ne parle alors plus de gain complexe mais de Fonction de Transfert

Sens physique : c’est une fonction complexe qui définit pour chaque
fréquence le gain du montage (proportion de tension d’entrée ramenée
en sortie).

Définition
Identique au gain, soit H la fonction de transfert d’un montage dont les tensions
d’entrée et de sortie sont respectivement Vin(jω) et Vout (jω) :

H(jω) =
Vout (jω)

Vin(jω)
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Étude de la Fonction de Transfert (1/2)

Fonction de transfert = fonction complexe

En électronique, on considère le module et l’argument de la fonction de trans-
fert, mis sous la forme :

Gain : exprimé en décibels (dB), c’est le module en échelle logarithmique,

GdB = 20log10(|H(jω)|)

Phase : en degrés ou radians,

ϕ = arg(H(jω))
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Étude de la Fonction de Transfert (2/2)

Tracé : Diagramme de Bode

Pour représenter la fonction de transfert, on trace :

le gain en décibel en fonction de la pulsation (ou fréquence),

la phase en fonction de la pulsation, sur la même échelle en abscisses

L’axe des abscisses est toujours un axe logarithmique :

entre une pulsation ω et 10ω, on parle de décade (subdivision de l’axe).

il n’y a pas de 0 sur l’axe des abscisses, le DC est à l’infini à gauche.
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Règles de calcul (1/3)

Remarque

L’étude de la fonction de transfert peut être simple, à condition de :

savoir retrouver les gains en dB et phases des fonctions de transfert,

connaître les règles de calcul sur les gains et les phases des fonctions de
transfert.
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Règles de calcul (2/3)

Soit H une fonction de transfert, les phases sont en radians.

Opposée d’une fonction de transfert (- H)

GdB(−H) = 20log10(| − H|) = 20log10(|H|) = GdB(H)

ϕ(−H) = arg(−H) = π + arg(H) = π + ϕ(H)

Le gain en dB est inchangé, le déphasage est de π.

Inversion d’une fonction de transfert (1 / H)

GdB

(
1
H

)
= 20log10

(∣∣∣∣ 1
H

∣∣∣∣) = 20log10

(
1
|H|

)
= 20log10(|H|−1) = −20log10(|H|) = −GdB(H)

ϕ

(
1
H

)
= arg

(
1
H

)
= arg(1)− arg(H) = −arg(H) = −ϕ(H)

Le gain en dB et la phase sont opposés.
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Règles de calcul (3/3)

Soient H1 et H2 deux fonctions de transfert, les phases sont en radians.

Produit de deux fonctions de transfert (H1 · H2)

GdB(H1H2)

= 20log10(|H1H2|)
= 20log10(|H1||H2|)
= 20[log10(|H1|) + log10(|H2|)]
= 20log10(|H1|) + 20log10(|H2|)
= G1 + G2

ϕ(H1H2) = arg(H1H2)

= arg(H1) + arg(H2)

= ϕ1 + ϕ2

Les gains en dB et les phases s’additionnent.
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Outils mathématiques : Diagramme de Bode des fonctions simples

Diagramme de Bode
des fonctions simples
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H(jω) = K

on pose
H(jω) = K

avec K une constante positive (K ≥ 0),

Gain

GdB(H)

= 20log10(|K |)
= 20log10(K )

Phase

ϕ(H)

= arg(K ) = 0
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H(jω) = K
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H(jω) = j ω
ω0

on pose
H(jω) = j

ω

ω0

avec ω0 une pulsation constante positive (ω0 > 0),

Gain

GdB(H)

= 20log10

(∣∣∣∣j ω

ω0

∣∣∣∣)
= 20log10

(
ω

ω0

)
Valeurs particulières :

GdB (ω = ω0) = 20log10(1) = 0

GdB (ω = 10x ω0) = 20log10(10x ) = 20x

Phase

ϕ(H)

= arg
(

j
ω

ω0

)
= atan

( ω
ω0
0

)
=

π

2
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