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Avant propos

Les lignes de transmission sont utilisées pour les télécommunications terrestres. Elles peuvent
être des :

lignes bifilaires (liaisons télégraphiques et téléphoniques) ;

lignes coaxiales (communications téléphoniques) ;

fibres optiques (communications téléphoniques) ;

lignes microruban (circuits actifs micro-ondes).

Dans le cas des câbles, on peut les classer selon leur utilisation en télécommunications :
téléphonique à ligne bifilaire ;

téléphonique à ligne coaxiale ;

téléphonique à fibre optique ;

sous-marin.
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Modélisation de la ligne

ug

Rg

A
i

C

ZL

DB

u

-x +x
x = -` x = 0

Modèle de la ligne de transmission de longueur ` alimentée par un générateur de tension
HF et fermée sur une impédance ZL.

Condition de propagation

` ≫ λ

R∆x L∆x

C∆x G∆x

-x +x
x x + ∆x

Modélisation du tronçon de ligne de longueur ∆x .

Avec :

R : résistance linéique (Ω / m) ;

L : inductance linéique (H / m) ;

C : capacité linéique (F / m) ;

G : conductance linéique (S / m) ;
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Équations de propagation

R∆x L∆x

C∆x G∆x

-x +x
x x + ∆x

Modélisation du tronçon de ligne de longueur ∆x .
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Équations de propagation

R∆x L∆x

C∆x G∆x

-x +x
x x + ∆x

Modélisation du tronçon de ligne de longueur ∆x .

Lois de comportement

tension aux bornes de l’inductance : uL = L∆x ∂iL
∂t

courant traversant le condensateur : iC = C∆x ∂uC
∂t
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Équations de propagation

R∆x L∆x

C∆x G∆x

-x +x
x x + ∆x

Modélisation du tronçon de ligne de longueur ∆x .

Mise en équation : Loi des mailles

u(x , t) = uR + uL + uC
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∂u
∂x

= −
(

L
∂i
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+ Ri
)
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Équations de propagation

R∆x L∆x

C∆x G∆x

-x +x
x x + ∆x

Modélisation du tronçon de ligne de longueur ∆x .

Mise en équation : Loi des mailles

∂u
∂x

= −
(

L
∂i
∂t

+ Ri
)

Mise en équation : Loi des noeuds

i(x , t) = iC + iG + i(x + ∆x , t)
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Équations de propagation

R∆x L∆x

C∆x G∆x

-x +x
x x + ∆x

Modélisation du tronçon de ligne de longueur ∆x .

Équations de couplage en régime temporel

∂u
∂x

= −
(

L
∂i
∂t

+ Ri
)

∂i
∂x

= −
(

C
∂u
∂t

+ Gu
)

(CYU) Systèmes Électroniques - S4 7 / 18



Équations de propagation

R∆x L∆x

C∆x G∆x

-x +x
x x + ∆x

Modélisation du tronçon de ligne de longueur ∆x .

Équations de couplage en régime harmonique
On admet :

u(x , t) = U(x)ejωt

i(x , t) = I(x)ejωt
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Équations de propagation

R∆x L∆x

C∆x G∆x

-x +x
x x + ∆x

Modélisation du tronçon de ligne de longueur ∆x .

Équations de couplage en régime harmonique
On admet :

u(x , t) = U(x)ejωt

i(x , t) = I(x)ejωt

Les équations de couplage deviennent :

∂U
∂x

= − (R + jωL) I

∂I
∂x

= − (G + jωC)U
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Équations de propagation

R∆x L∆x

C∆x G∆x

-x +x
x x + ∆x

Modélisation du tronçon de ligne de longueur ∆x .

Équations de propagation et relation de dispersion
Il en résulte :

∂2U
∂x2 + k2U = 0

∂2I
∂x2 + k2I = 0

avec k le nombre d’onde complexe et la relation de dispersion :

k2 = − (R + jωL) (G + jωC)

ou
k2 = −γ2
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Impédance caractéristique
On pose :

Z = R + jωL
Y = G + jωC
γ2 = ZY dont γ =

√
ZY

γ = jk

On admet la forme de l’amplitude de l’onde progressive :

I(x) = Ii e
−γx

En remplaçant I(x) et γ dans la deuxième équation de couplage, on peut démontrer que :

U(x) =
γ

Y
I(x) = Ui e

−γx

L’impédance le long de la ligne est alors :

Z (x) =
U(x)
I(x)

=
γ

Y
=

√
R + jωL

G + jωC

À ω fixe, cette quantité est constante quelque soit la position en x . Ainsi, on définit l’impédance caractéristique Zc :

Zc =
Ui
Ii

=

√
R + jωL

G + jωC

Remarques

Dans le cas sans pertes (R = G = 0), Zc =
√

L
C

Dans le cas sans distorsion (condition de Heaviside, R
L = G

C ), Zc =
√

L
C
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Étude de la réflexion à l’extrémité d’une ligne

Étude de la réflexion à l’extrémité d’une
ligne
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Prise en compte des conditions aux limites (1/2)

ug

Rg

A
i

C

ZL

DB

u

-x +x
x = -` x = 0

Modèle de la ligne de transmission de longueur ` alimentée par un générateur de tension
HF et fermée sur une impédance ZL.

Du fait de l’interface (ligne fermée en butée), on admet que l’onde courant dans la ligne
correspond à la superposition de l’onde incidente et l’onde réfléchie.

Ainsi l’amplitude complexe est donnée par :

I(x) = iI + iR = Iie
−jkx + Ir ejkx
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Prise en compte des conditions aux limites (2/2)

Rappel : Équations de couplage en régime harmonique

∂U
∂x

= −Z I

∂I
∂x

= −YU

On remplace I(x) dans la deuxième équation de couplage et on en déduit U(x) :

U(x) = Zc

(
Iie

−jkx − Ir ejkx
)

On définit :

Z (x) =
U(x)
I(x)

= Zc
Iie−jkx − Ir ejkx

Iie−jkx + Ir ejkx
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U(x) = Zc

(
Iie

−jkx − Ir ejkx
)

On définit :

Z (x) =
U(x)
I(x)

= Zc
Iie−jkx − Ir ejkx

Iie−jkx + Ir ejkx
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Coefficient de réflexion en amplitude (1/2)

Rappel

I(x) = iI + iR = Iie
−jkx + Ir ejkx

On définit le coefficient de réflexion en amplitude pour le courant : ri =
iR
iI

Dans ce référentiel, à l’interface entre la ligne de transmission et la impédance
de charge (à x = 0) :

ri =
Ir
Ii

et

Z (x = 0) = Zc
Ii − Ir
Ii + Ir

= ZL

On en déduit :

ri =
Zc − ZL
Zc + ZL

On peut aussi démontrer que : ru = −ri =
ZL−Zc
ZL+Zc
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Coefficient de réflexion en amplitude (2/2)

Cas particuliers

ZL = Zc → ri = ru = 0 (on parle alors d’adaptation d’impédances)

ZL = 0 → ri = 1 et ru = −1

ZL = ∞ → ri = −1 et ru = 1
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Conséquences (1/2)

Forme de la tension complexe

U(x) = Zc

(
Iie

−jkx − Ir ejkx
)

Changement de référentiel (Origine au générateur)
On pose x’ = x + `. Alors :
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Conséquences (1/2)

Forme de la tension complexe

U(x) = Ui

(
e−jkx − rie

jkx
)

Changement de référentiel (Origine au générateur)
On pose x’ = x + `. Alors :
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Conséquences (1/2)
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Conséquences (2/2)

Attention

À partir d’ici la variable x ′ = x pour alléger la notation.

ug

Rg

A
i

C

ZL

DB

u

-x +x
x = 0 x = `

U(x) = Zc Ii
(

e−jkx + rue−2jk`ejkx
)

I(x) = Ii
(

e−jkx − rue−2jk`ejkx
)

Z (x) =
U(x)
I(x)

= Zc
e−jkx + rue−2jk`ejkx

e−jkx − rue−2jk`ejkx
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Impédance ramenée

Le générateur voit une impédance d’entrée Zin :

Zin = Z (x = 0) = Zc
1 + rue−2jk`

1 − rue−2jk`

Zin = Zc
(ZL + Zc)ejk` + (ZL − Zc)e−jk`

(ZL + Zc)ejk` + (ZL − Zc)e−jk`

Zin = Zc
ZLcos(k`) + jZcsin(k`)
Zccos(k`) + jZLsin(k`)

Zin = Zc
ZL + jZctan(k`)
Zc + jZLtan(k`)

Remarque

Pour une ligne sans pertes (k = k ′ = 2π
λ ),

Zin = Zc
ZL + jZctan(k ′`)

Zc + jZLtan(k ′`)

Cas particuliers :
` = λ

2 , Zin = ZL

` = λ
4 , Zin = Z2

c
ZL

(on parle du transformateur quart d’onde)
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Ondes stationnaires

Rappel

U(x) = Ui

(
e−jkx + rue−2jk`ejkx

)
ru =

ZL − Zc
ZL + Zc

Lorsque on s’intéresse aux cas extrêmes de ZL :

ru = 1 (Circuit Ouvert) →

U(x) = Ui

(
e−jkx + e−2jk`ejkx

)
= Ui e

−jk`
(

e−jk(x−`) + ejk(x−`)
)

u(x , t) = 2Ui cos(k(x − `))ej(ωt−k`)

ru = −1 (Court Circuit) →

U(x) = Ui

(
e−jkx − e−2jk`ejkx

)
= Ui e

−jk`
(

e−jk(x−`) − ejk(x−`)
)

u(x , t) = 2jUi sin(k(x − `))ej(ωt−k`)

Remarques
Cette forme de solution possède des propriétés remarquables :

Re {u(x , t)} est le produit d’une fonction de l’espace et par un fonction du temps (et non plus une fonction de
l’espace et du temps).

L’amplitude n’est pas constante le long de la ligne mais dépend de x.

Tous les points oscillent en phase ou en opposition de phase. On ne voit plus apparaître de terme du type ωt − kx ,
donc on ne « voit » plus de propagation et on parle alors d’Ondes Stationnaires.

Une ligne en onde stationnaire est un résonateur. La longueur de la ligne permet alors de choisir le type de résonance
pour une application voulue (filtrage, antenne, CEM).
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Ondes pseudo stationnaires

Attention

ru =

ΓL =
ZL−Zc
ZL+Zc

= |ΓL |e
jθL

U(x) = Ui

(
e−jkx + |ΓL |e

(jθL−2jk`)ejkx
)

Lorsque la ligne n’est pas adaptée (ΓL 6= 0), l’amplitude de la tension est :

Maximum, UM = |Ui | (1 + |ΓL |)

Minimum, Um = |Ui | (1 − |ΓL |)

On définit ainsi le Rapport d’Ondes Stationnaires (Standing Wave Ratio, SWR) :

SWR = ρ =
UM
Um

=
1 + |ΓL |
1 − |ΓL |

Cas particuliers
|ΓL | = 0, ρ = 1 : Onde progressive

0 < |ΓL | < 1, ρ → ∞ : Onde pseudo stationnaire

|ΓL | = 1, ρ = ∞ : Onde stationnaire
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