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0 Avant propos
@ Propagation en haute fréquence

e Etude de la réflexion & I'extrémité d’une ligne
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Avant propos

Les lignes de transmission sont utilis€ées pour les télécommunications terrestres. Elles peuvent
étre des :

@ lignes bifilaires (licisons télégraphiques et téléphoniques);
@ lignes coaxiales (communications téléphoniques):

@ fibres optiques (communications téléphoniques)

@ lignes microruban (circuits actifs micro-ondes).

Dans le cas des cdbles, on peut les classer selon leur utilisation en télécommunications :
@ téléphonique & ligne bifilaire ;
@ téléphonique & ligne coaxiale ;
@ téléphonique & fibre optique ;
@ sous-marin.
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Propagation en haute fréquence

Propagation en haute fréquence
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Modélisation de la ligne

Z

D

| b x
x=-f x=0

Modeéle de la ligne de transmission de longueur ¢ alimentée par un générateur de tension
HF et fermée sur une impédance 7.
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Modélisation de la ligne

4

D

| } +x
X=-f x=0

Modeéle de la ligne de transmission de longueur ¢ alimentée par un générateur de tension
HF et fermée sur une impédance 7.

Condition de propagation

0>3> A
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Modélisation de la ligne

Z

D

| b x
x=-f x=0

Modeéle de la ligne de transmission de longueur ¢ alimentée par un générateur de tension
HF et fermée sur une impédance 7.

0>3> A

T T

Modélisation du trongon de ligne de longueur Ax.
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Modélisation de la ligne

Z

D

| b x
x=-f x=0

Modeéle de la ligne de transmission de longueur ¢ alimentée par un générateur de tension
HF et fermée sur une impédance 7.

0>3> A

Avec :
@ R:résistance linéique (O / m);

T T

Modélisation du trongon de ligne de longueur Ax.
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Modélisation de la ligne

Z

D

| b x
x=-f x=0

Modeéle de la ligne de transmission de longueur ¢ alimentée par un générateur de tension
HF et fermée sur une impédance 7.

0>3> A

Avec :
@ R:résistance linéique (O / m);

@ [ :inductance linéique (H/ m);

T T

Modélisation du trongon de ligne de longueur Ax.
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Modélisation de la ligne

Z

D

| b x
x=-f x=0

Modeéle de la ligne de transmission de longueur ¢ alimentée par un générateur de tension
HF et fermée sur une impédance 7.

0>3> A
Avec :
@ R:résistance linéique (O / m);
@ [ :inductance linéique (H/ m);
- - @ C:capacité linéique (F / m);

Modélisation du trongon de ligne de longueur Ax.
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Modélisation de la ligne

Z

D

| b x
x=-f x=0

Modeéle de la ligne de transmission de longueur ¢ alimentée par un générateur de tension
HF et fermée sur une impédance 7.

0>3> A
Avec :
@ R:résistance linéique (O / m);
@ [ :inductance linéique (H/ m);
- - @ C:capacité linéique (F / m);

Modélisation du froncon de ligne de longueur Ax. @ & conductance linéique (S /m):
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Equations de propagation
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Modélisation du trongon de ligne de longueur Ax.
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Equations de propagation

- - +x
X X+ AX

Modélisation du trongon de ligne de longueur Ax.

Lois de comportement

@ tension aux bornes de I'inductance : u; = LAX%—’}

@ courant traversant le condensateur : ic = CAxag’—fC
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Equations de propagation

Modélisation du trongon de ligne de longueur Ax

Mise en équation : Loi des mailles

u(x,t) = up+u + uc
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Equations de propagation

Modélisation du trongon de ligne de longueur Ax.

Mise en équation : Loi des mailles

ou <Lﬂ + I?i)

ax  \of
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Equations de propagation

Modélisation du trongon de ligne de longueur Ax.

Mise en équation : Loi des mailles

oy <Lﬂ + I?i)

ox  \ ot

Mise en équation : Loi des noeuds

i(x, 1) = Ic + I+ i(x + AX, 1)
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Equations de propagation

Modélisation du trongon de ligne de longueur Ax.

Mise en équation : Loi des mailles

oy <Lﬂ + I?i)

ox  \ ot

Mise en équation : Loi des noeuds

L (cai’+eu)

ox ot
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Equations de propagation

(CYU) Systémes Electroniques - $4 7/18



Equations de propagation

Modélisation du trongon de ligne de longueur Ax.

Equations de couplage en régime harmonique

On admet :

u(x, 1) = U(x)et
i(x, 1) = I(x)e!
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Equations de propagation

cax| | eax

T

f f g
% R

Modélisation du trongon de ligne de longueur Ax.

Equations de couplage en régime harmonique

On admet :

u(x, 1) = U(x)et
i(x, 1) = I(x)e!

Les équations de couplage deviennent :

wu .

= =~ (R+wl)!
a .
% = (EHwC)U
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Equations de propagation

cax| | eax

T

f f g
% R

Modélisation du trongon de ligne de longueur Ax.

Equations de propagation et relation de dispersion

Il en résulte :

avec k le nombre d’onde complexe et la relation de dispersion :
k? = — (R+ jwl) (G + jwC)

k2 _ 7,}/2
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Impédance caractéristique

On pose :
@ Z=R+jwlL
@ V=G+jwC
@ 42 =7y donty=v2ZY¥
@ y=jk
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Impédance caractéristique

On pose :
@ Z=R+jwlL
@ V=G+jwC
@ 42 =7y donty=v2ZY¥
@ y=jk
On admet la forme de I'amplitude de I'onde progressive :

1(x) = e
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Impédance caractéristique

On pose :
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Impédance caractéristique

On pose :
@ Z=R+jwlL
@ V=G+jwC
@ 42 =7y donty=v2ZY¥
@ y=jk

On admet la forme de I'amplitude de I'onde progressive :

1(x) = e

En remplagant /(x) et ¢ dans la deuxiéme équation de couplage, on peut démontrer que :

UK) = T1x) = Yo

U _ v _ [RejeL
20="09 = v =\ erjwc

Limpédance le long de la ligne est alors :
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Impédance caractéristique

On pose :
@ Z=R+jwlL
@ V=G+jwC
@ 42 =7y donty=v2ZY¥
@ y=jk
On admet la forme de I'amplitude de I'onde progressive :

1(x) = e
En remplagant /(x) et ¢ dans la deuxiéme équation de couplage, on peut démontrer que :
UK) = T1x) = Yo
Limpédance le long de la ligne est alors :

U v [RjeL
20="09 = v =\ erjwc

A w fixe, cefte quantité est constante quelque soit la position en x. Ainsi, on définit I'impédance caractéristique Zc :

S U _ [ Rtjul
cT 0 T\ e+jwC
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Impédance caractéristique

On pose :
@ Z=R+jwlL
@ V=G+jwC
@ 42 =7y donty=v2ZY¥
@ y=jk
On admet la forme de I'amplitude de I'onde progressive :

1(x) = e
En remplagant /(x) et ¢ dans la deuxiéme équation de couplage, on peut démontrer que :
UK = L1 = Yo
Limpédance le long de la ligne est alors :

Z(X):%L:)):%: R+ jwl

G+ jwC

A w fixe, cefte quantité est constante quelque soit la position en x. Ainsi, on définit I'impédance caractéristique Zc :

S U _ [ RtjuL
cT 0 T\ e+jwC
Remarques
@ Dansle cas sans pertes (R = G = 0), Zc = é
@ Dans le cas sans distorsion (condifion de Heaviside, f = £),Zc =/ &

(CYU) Systémes Electroniques - $4 8/18



Etude de la réflexion & I’extrémité d’une ligne

Ftude de la réflexion & I’extrémité d’une
ligne
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Prise en compte des conditions aux limites (1/2)

Z

Modéle de la ligne de transmission de longueur ¢ alimentée par un générateur de tension
HF et fermée sur une impédance 7.

Du fait de I'interface (ligne fermée en butée), on admet que I'onde courant dans la ligne
correspond & la superposition de I’onde incidente et I'onde réfléchie.
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Prise en compte des conditions aux limites (1/2)

Z

Modéle de la ligne de transmission de longueur ¢ alimentée par un générateur de tension
HF et fermée sur une impédance 7.

Du fait de I'interface (ligne fermée en butée), on admet que I'onde courant dans la ligne
correspond & la superposition de I’onde incidente et I'onde réfléchie.

Ainsi I’'amplitude complexe est donnée par :
1(x) = iy + ip = e 4 &
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Prise en compte des conditions aux limites (2/2)

Rappel : Equations de couplage en régime harmonique
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Prise en compte des conditions aux limites (2/2)

Rappel : Equations de couplage en régime harmonique

On remplace [(x) dans la deuxieme équation de couplage et on en déduit U(x) :
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Prise en compte des conditions aux limites (2/2)

Rappel : Equations de couplage en régime harmonique

On remplace [(x) dans la deuxieme équation de couplage et on en déduit U(x) :

U(x) = Ze (I,'e*/'kx - ,,ejkx)
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Prise en compte des conditions aux limites (2/2)

Rappel : Equations de couplage en régime harmonique

u
=
A _ vy

On remplace [(x) dans la deuxieme équation de couplage et on en déduit U(x)

U(x) = Ze (I,'e*/'kx - ,,eka)

On définit :
U(x ek — | efkx
Z(X)Zﬁ: CI — r 7
1(x) lie™ kx4 Jrelkx

11/18
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Coefficient de réflexion en amplitude (1/2)

1(X) = i+ ip = e ™R 4 [ &k
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Coefficient de réflexion en amplitude (1/2)

1(X) = i+ ip = e ™R 4 [ &k

On définit le coefficient de réflexion en amplitude pour le courant : r; = ’Tff
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Coefficient de réflexion en amplitude (1/2)

1(X) = i+ ip = e ™R 4 [ &k

On définit le coefficient de réflexion en amplitude pour le courant : r; = f

Dans ce référentiel, & I'interface entre la ligne de transmission et la impédance
de charge (G x=0):

"
I’,—Ti
et
Z(x = zhi=h_
X=0)=Z5p =4
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Coefficient de réflexion en amplitude (1/2)

1(X) = i+ ip = e ™R 4 [ &k

On définit le coefficient de réflexion en amplitude pour le courant : r; = f

Dans ce référentiel, & I'interface entre la ligne de transmission et la impédance
de charge (G x=0):

=t
I
et
Z(x = zhi=h_
X=0)=Z5p =4
On en déduit :
-_Z-2
" Ze+Z
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Coefficient de réflexion en amplitude (1/2)

1(X) = i+ ip = e ™R 4 [ &k

On définit le coefficient de réflexion en amplitude pour le courant : r; = f

Dans ce référentiel, & I'interface entre la ligne de transmission et la impédance
de charge (G x=0):

et
Z(x =0) _ g b=k =27
li+1r
On en déduit :
-_Z-2
" Ze+Z

oo ./
On peut aussi démontrerque : 1y = —1; = ZLJr—Zz
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Coefficient de réflexion en amplitude (2/2)

Cas particuliers
@ /) =Zc — 1 =1y = 0 (on parle alors d’adaptation d’impédances)
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Coefficient de réflexion en amplitude (2/2)

Cas particuliers
@ /) =Zc — 1 =1y = 0 (on parle alors d’adaptation d’impédances)
0 =0—-r=1letry=-1
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Coefficient de réflexion en amplitude (2/2)

Cas particuliers
@ /) =Zc — 1 =1y = 0 (on parle alors d’adaptation d’impédances)
0 =0—-r=1letrg=-1
0/ =c0—=ri=—letrg=1
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Conséqguences (1/2)

Forme de la tension complexe

U(x) = Ze (/,.e—f'kX - /,e"kX)
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Conséqguences (1/2)

Forme de la tension complexe

U(x) = Zcly (e—f‘“ = %e"“)

l
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Conséqguences (1/2)

Forme de la tension complexe

[

(x) = Uj (e —e*)
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Conséqguences (1/2)

Forme de la tension complexe

<

(x) = Uy (e + Tek)
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Conséqguences (1/2)

Forme de la tension complexe

<

(x) = Uy (e + Tek)

Changement de référentiel (Origine au générateur)

On pose X" =x + £. Alors :
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Conséqguences (1/2)

Forme de la tension complexe
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Conséqguences (1/2)

Forme de la tension complexe

<

(x) = Uy (e + Tek)

Changement de référentiel (Origine au générateur)

On pose X" =x + £. Alors :

U(X) = Uy (&7 ek 4+ Tk o)
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Conséqguences (1/2)

Forme de la tension complexe

<

(x) = Uy (e + Tek)

Changement de référentiel (Origine au générateur)

On pose X" =x + £. Alors :

UX) = U; (e—jkx’ ek ejkx’)
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Conséguences (2/2)

A partir d’ici la variable x’ = x pour alléger la notation.

C
2
D
X x=0 X= IH
U(x) = Zel; <e—jkx +Ee—2jkéejkx>
I(x) = | (e—jkx _Ee—ijé‘eikx>
P _ g(x) _ e—jkx +Ee—2jk£eikx
(x) = x) e _r,e Ik

15/18
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Impédance ramenée

Le générateur voit une impédance d’entrée Z;, :

—2jkt
Zn=2(x=0) = ZCHL
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Impédance ramenée

Le générateur voit une impédance d’entrée Z;, :

141 e Ukt
1 —Trge—2kt
s 7 G+2)e 4+ (4 —Ze)e M
NG+ Zo) ek 4 (7 — Zo)e K

Zn=2(x=0)=Z
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Impédance ramenée

Le générateur voit une impédance d’entrée Z;, :

1 4o 2Kt
1 —Te 2K
(Z+Ze)eM + (2 - Zo)e ™
(2 +2e) M + (7, — Zc)e M
Z,cos(kl) + jZcsin(ke)
Zccos(kl) + jZ; sin(ke)

Zn=2(x=0)=Z

Zin: C

Zin:Zc
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Impédance ramenée

Le générateur voit une impédance d’entrée Z;, :

1 4o 2Kt
1—r o2k
(Z+Z6)e + (2 — Zc)e ™
(2 +2e) M + (7, — Zc)e M
Z,cos(kl) + jZcsin(ke)
Zccos(kl) + jZ; sin(ke)

Z + jZctan(ke)
Zc + jZ tan(k?)

Zn=2(x=0)=Z

Zin: C

Zin:Zc

an :Zc
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Impédance ramenée

Le générateur voit une impédance d’entrée Z;, :

1 4o 2Kt
1—r o2k
(Z+2e) + (2~ Zc)e M
(2 + 20)eK 1 (7, — Ze)e K
Z,cos(kl) + jZcsin(ke)
Zccos(kl) + jZ; sin(ke)

Z, + jZctan(ke)
Zc + jZ tan(k?)

Remarque

Pour une ligne sans pertes (k = k' = £F),

_ Z+jZstan(k't)
= “°Zc +jzitan(k'l)

Zn=2(x=0)=2

Zin: C

Zin:Zc

Zin :Zc

Zin
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Impédance ramenée

Le générateur voit une impédance d’entrée Z;, :

1 4o 2Kt
1—r o2k
(Z+2e) + (2~ Zc)e M
(2 + 20)eK 1 (7, — Ze)e K
Z,cos(kl) + jZcsin(ke)
Zccos(kl) + jZ; sin(ke)

Z, + jZctan(ke)
Zc + jZ tan(k?)

Remarque

Pour une ligne sans pertes (k = k' = £F),

_ Z+jZstan(k't)
= “°Zc +jzitan(k'l)

Zn=2(x=0)=2

Zin: C

Zin:Zc

Zin :Zc

Zin

Cas parficuliers :
2 . Zin = ZL

2
@ /= %, Dy = % (on parle du transformateur quart d’onde)
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Ondes stationnaires

Ux) = U, (e—jkx 4 o2kt eikx)

B =%

T, =
YT Z 47

17/18
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Ondes stationnaires

Ux) = U, (e—jkx 4 o2kt eikx)

B =%

Tu =
YT Z 47

Lorsque on s'intéresse aux cas extrémes de 7 :
@ 7 =1 (Circuit Ouvert) —

17/18
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Ondes stationnaires

Ux) = U, (e—jkx 4 o2kt eikx)

B =%

Tu =
YT Z 47

Lorsque on s'intéresse aux cas extrémes de 7 :
@ 75 =1 (Circuit Ouvert) — U(x) = U; (e—/kx n e*Z/kf”s/'kX)
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Ondes stationnaires

Ux) = U, (e—jkx 4 o2kt eikx)

B =%

Tu =
YT Z 47

Lorsque on s'intéresse aux cas extrémes de 7 :
@ 75 = 1 (Circuit Ouvert) — U(x) = U; (e*/kx + e*zf““s/“x) = Ukt (e*/“("*/‘) + s/“("*/"))

17/18
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Ondes stationnaires

Ux) = U, (e—jkx 4 o2kt eikx)

B =%

Tu =
YT Z 47

Lorsque on s'intéresse aux cas extrémes de 7 :
@ 75 = 1 (Circuit Ouvert) — U(x) = U; (e*/kx + e*zf““s/“x) = Ukt (e*/“("*/‘) + s/“("*/"))

u(x, 1) = 2U;cos(k(x — £))elw=k0)

17/18
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Ondes stationnaires

Ux) = U, (e—jkx 4 o2kt eikx)

B =%

Tu =
YT Z 47

Lorsque on s'intéresse aux cas extrémes de 7 :
@ 75 = 1 (Circuit Ouvert) — U(x) = U; (e*/kx + e*zf““s/“x) = Ukt (e*/“("*/‘) + s/“("*/"))

u(x, 1) = 2U;cos(k(x — £))elw=k0)

@ 7 = —1 (Court Circuit) —
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Ondes stationnaires

Ux) = U, (e—jkx 4 o2kt eikx)

B =%

Tu =
YT Z 47

Lorsque on s'intéresse aux cas extrémes de 7 :
@ 75 = 1 (Circuit Ouvert) — U(x) = U; (e*/kx + e*zf““s/“x) = Ukt (e*/“("*/‘) + s/“("*/"))

u(x, 1) = 2U;cos(k(x — £))elw=k0)

@ 7 = -1 (Court Circuit) -+ U(x) = U; (e—jkx _ o2kt sikx)
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Ondes stationnaires

Ux) = U, (e—jkx 4 o2kt eikx)

B =%

Tu =
YT Z 47

Lorsque on s'intéresse aux cas extrémes de 7 :
@ 75 = 1 (Circuit Ouvert) — U(x) = U; (e*/kx + e*zf““s/“x) = Ukt (e*/“("*/‘) + s/“("*/"))

u(x, 1) = 2U;cos(k(x — £))elw=k0)

@ 75 = —1(Court Circuit) = U(x) = U; (e*f“X - 9*21”9"‘“) = Uekt (e*fk(’(*”) - s"k("*/))
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Ondes stationnaires

Ux) =y (e—jkx +Ee—2jl<éeﬂ<x)

B =%

Ty =
YT Z 47

Lorsque on s'intéresse aux cas extrémes de 7 :
@ 7 = 1 (Circuit Ouvert) — U(x) = U; (e*/kx + 9*2/“"‘9/“’() = Ukt (e*/“("*/") + 9/7‘("*/"))

u(x, 1) = 2U;cos(k(x — £))elw=k0)

@ 75 = —1(Court Circuit) = U(x) = U; (e*f“X - e*sz”sikx) = Uekt (e*fk(’(*’) - s"k("*"))

u(x, 1) = 2jU;sin(k(x — £))&/@!=k0)

Remarques

Cette forme de solution posséde des propriétés remarquables :
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u(x, 1) = 2jU;sin(k(x — £))&/@!=k0)

Remarques

Cette forme de solution posséde des propriétés remarquables :
@ Re{u(x, 1)} estle produit d'une fonction de I'espace et par un fonction du temps (et non plus une fonction de

I’'espace et du temps).
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Cette forme de solution posséde des propriétés remarquables :
@ Re{u(x, 1)} estle produit d'une fonction de I'espace et par un fonction du temps (et non plus une fonction de

I’'espace et du temps).
@ L'amplitude n’est pas constante le long de la ligne mais dépend de x.
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Ondes stationnaires

Ux) =y (e—jkx +Ee—2jl<[eik)<)

B =%

y =

2+2

Lorsque on s'intéresse aux cas extrémes de 7 :
@ 7 = 1 (Circuit Ouvert) — U(x) = U; (e*/kx + 9*2/“"‘9/“") = Ukt (e*/“("*/") + 9/7‘("*/"))

u(x, 1) = 2U;cos(k(x — £))elw=k0)

@ 75 = —1(Court Circuit) = U(x) = U; (e*f“X - e*sz”sikx) = Uekt (e*fk(’(*’) - s"k("*"))

u(x, 1) = 2jU;sin(k(x — £))&/@!=k0)

Remarques

Cette forme de solution posséde des propriétés remarquables :
@ Re{u(x, 1)} estle produit d'une fonction de I'espace et par un fonction du temps (et non plus une fonction de
I’'espace et du temps).
@ L'amplitude n’est pas constante le long de la ligne mais dépend de x.
@ Tous les points oscillent en phase ou en opposition de phase. On ne voit plus apparaitre de terme du type wt — kx,
donc on ne « voit » plus de propagation et on parle alors d’Ondes Stationnaires.

émes Electroniques - S4 17/18

(CYU)
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@ 7 = 1 (Circuit Ouvert) — U(x) = U; (e*/kx + 9*2/“"‘9/“’() = Ukt (e*/“("*/") + 9/7‘("*/"))

u(x, 1) = 2U;cos(k(x — £))elw=k0)

@ 75 = —1(Court Circuit) = U(x) = U; (e*f“X - e*sz”sikx) = Uekt (e*fk(’(*’) - s"k("*"))

u(x, 1) = 2jU;sin(k(x — £))&/@!=k0)

Remarques

Cette forme de solution posséde des propriétés remarquables :
@ Re{u(x, 1)} estle produit d'une fonction de I'espace et par un fonction du temps (et non plus une fonction de
I’'espace et du temps).
@ L'amplitude n’est pas constante le long de la ligne mais dépend de x.
@ Tous les points oscillent en phase ou en opposition de phase. On ne voit plus apparaitre de terme du type wt — kx,
donc on ne « voit » plus de propagation et on parle alors d’Ondes Stationnaires.

Une ligne en onde stationnaire est un résonateur. La longueur de la ligne permet alors de choisir le type de résonance
pour une application voulue (filirage, antenne, CEM).
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Ondes pseudo stationnaires
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Ondes pseudo stationnaires
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Ondes pseudo stationnaires

5=

= j6,
g=I; = zt+zc = [r| &L
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Ondes pseudo stationnaires

5=

= j6,
g=I; = zt+zc = [r| &L

U(x) = Uy (7 + |y | oPL=2t) )

(CYU) Systémes Electroniques - $4 18/18



Ondes pseudo stationnaires

. 2 —Zc 0
g=I; = Zt‘*'ZC = [r| &L

U(x) = Uy (7 + |y | oPL=2t) )

Lorsque la ligne n“est pas adaptée (I'; # 0), I'amplitude de la tension est :
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Ondes pseudo stationnaires

. 2 —Zc 0
g=I; = Zt‘*'ZC = [r| &L

U(x) = Uy (7 + |y | oPL=2t) )

Lorsque la ligne n“est pas adaptée (I'; # 0), I'amplitude de la tension est :
@ Maximum, Uy = |U;| (1 +[T])
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. 2 —Zc 0
g=I; = Zt‘*'ZC = [r| &L

U(x) = Uy (7 + |y | oPL=2t) )

Lorsque la ligne n“est pas adaptée (I'; # 0), I'amplitude de la tension est :
@ Maximum, Uy, = U] (1 + T ])
@ Minimum, Um = |U;] (1 —|T;])
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Ondes pseudo stationnaires

. 2 —Zc 0
g=I; = Zt‘*'ZC = [r| &L

U(x) = Uy (7 + |y | oPL=2t) )

Lorsque la ligne n“est pas adaptée (I'; # 0), I'amplitude de la tension est :
@ Maximum, Uy, = U] (1 + T ])
@ Minimum, Um = |U;] (1 —|T;])

On définit ainsi le Rapport d’Ondes Stationnaires (Standing Wave Ratio, SWR) :

_ U 14T
= B
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Ondes pseudo stationnaires

. 2 —Zc 0
g=I; = Zt‘*'ZC = [r| &L

U(x) = Uy (7 + |y | oPL=2t) )

Lorsque la ligne n“est pas adaptée (I'; # 0), I'amplitude de la tension est :
@ Maximum, Uy, = U] (1 + T ])
@ Minimum, Um = U] (1 —|T;])

On définit ainsi le Rapport d’Ondes Stationnaires (Standing Wave Ratio, SWR) :

_ U 14T
= B

Cas particuliers

@ || =0,p=1:0nde progressive

@ 0< || <1,p— co:Onde pseudo stationnaire

@ [I|| =1, p = o : Onde stationnaire
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