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Intérêt

Rappel

ΓL =
ZL − Zc
ZL + Zc

= |ΓL |e
jθL

Z (x) = Zc
1 + ΓLe−2jkx

1 − ΓLe−2jkx
= Zc

1 + Γ(x)
1 − Γ(x)

ρ =
1 + |ΓL |
1 − |ΓL |

Dans le cas particulier où l’on se place sur l’impédance de charge :

ZL = Zc
1 + ΓL

1 − ΓL

On définit les impédances réduites (en divisant les impédances Z par Zc) :

z(x) =
1 + Γ(x)
1 − Γ(x)

zL =
1 + ΓL

1 − ΓL

La détermination |ΓL | résulte de la mesure du SWR (ρ) :

|ΓL | =
ρ − 1
ρ + 1

De même, il est possible de calculer z(x) d’après le coefficient de réflexion Γ. Le Diagramme de Smith
est un abaque d’impédances qui permet, connaissant Γ de déterminer z et inversement.
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Principe

Soit une ligne sans pertes d’impédance caractéristique Zc chargée par ZL :

Coefficient de réflexion en x :

Γ(x) = |ΓL|ej(θL−2k ′x)

Impédance en x :

Z (x) = Zc
1 + ΓLe−2jk ′x

1 − ΓLe−2jk ′x

(CYU) Systèmes Électroniques - S4 6 / 13



Principe

Soit une ligne sans pertes d’impédance caractéristique Zc chargée par ZL :
Coefficient de réflexion en x :

Γ(x) = |ΓL|ej(θL−2k ′x)

Impédance en x :

Z (x) = Zc
1 + ΓLe−2jk ′x

1 − ΓLe−2jk ′x

(CYU) Systèmes Électroniques - S4 6 / 13



Principe

Soit une ligne sans pertes d’impédance caractéristique Zc chargée par ZL :
Coefficient de réflexion en x :

Γ(x) = |ΓL|ej(θL−2k ′x)

Impédance en x :

Z (x) = Zc
1 + ΓLe−2jk ′x

1 − ΓLe−2jk ′x

(CYU) Systèmes Électroniques - S4 6 / 13



Représentation

En utilisant l’impédance réduite z(x) :

Γ(x) =
z(x)− 1
z(x) + 1

z(x) =
1 + Γ(x)
1 − Γ(x)

Il est donc équivalent de connaître les deux grandeurs complexes Γ(x) ou z(x).

Justification

z(x) peut être représenté z(x) = rz + jxz avec rz ≥ 0 et −∞ < xz < ∞ → nécessite
l’utilisation d’un demi plan infini ;

Γ(x) peut être représenté Γ(x) = |Γ|ejθ = p + jq → nécessite l’utilisation d’un disque
de rayon unité.
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Construction de l’abaque (1/2)

Recherche des lieux des points correspondant à rz = cste et xz = cste dans la représenta-
tion polaire de Γ :

z(x) =
1 + Γ(x)
1 − Γ(x)

→ rz + jxz =
1 + p + jq
1 − p − jq

En séparant les parties réelle et imaginaire :

rz =
1 − p2 − q2

(1 − p)2 + q2

xz =
2q

(1 − p)2 + q2
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rz = cste
Les lieux de rz = cste sont des cercles d’équation :(

p − rz
rz + 1

)2

+ q2 =
1

(rz + 1)2

rz = 0 → Cercle de centre (p = 0,q = 0), correspond à une impédance purement
imaginaire ;

rz = 1 → correspond à Z (x) = Zc ;

rz = ∞ → Cercle de centre (p = 1,q = 0), correspond au point de partie réelle 1.

xz = cste
Les lieux de xz = cste sont des cercles d’équation :

(1 − p)2 +

(
q − 1

xz

)2

=
1
x2

z

xz = 0 → Cercle de centre (p = 1,q = ∞), correspond à une impédance purement
réelle ;

xz = ∞ → correspond à un Cercle point de centre (p = 1,q = 0).
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Présentation du diagramme
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Exemple d’utilisation de l’abaque

Ennoncé
Une impédance de charge de 130 + j90 Ω ferme une ligne de transmission (Zc = 50 Ω) de
longueur ` = 0,3λ. Calculer :

l’impédance réduite (zL) ;

le coefficient de réflexion à l’extremité de la ligne (ΓL) ;

le coefficient de réflexion à l’entrée de la ligne (Γin) ;

l’impédance à l’entrée de la ligne (Zin) ;

le SWR (ρ) ;

le coefficient de réflexion en dB (return loss, RL = −20log10|Γ|).
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Exercices

1 Soit une impédance réduite z = 0,5 - j0,6 Ω qui ferme une ligne de transmission sans
pertes. Déterminer les formes polaire et cartésienne du coefficient de réflexion.

2 Soit une ligne 50 Ω fermée sur une impédance ZL = 25 + j75 Ω. Déterminer :

le coefficient de réflexion (module et phase) ;
le coefficient de réflexion en dB ;
le SWR;
le coefficient de réflexion et l’impédance ramenée en un point à λ/4 de la
charge (Zx1), puis le coefficient de réflexion et l’impédance ramenée d’un point
en revenant de 0,1λ vers la charge (Zx2).
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