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1D Propagation (1/2)

We consider that there is propagation of a wave from O to M when the motion of any
point M reproduces that of O with a time shift or delay.

The last can be represented mathematically as follows:

Definition
The medium is assumed to be non-dispersive when the delay τ of M with respect to O is
proportional to the distance OM = x , and therefore we can write τ = x

c .

The parameter c has the dimension of a velocity: is the propagation speed of the wave.
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1D Propagation (2/2)

We can define f (x , t) = fM(t) with:
x space variable

t time variable

We can also write f (x = 0, t) = fO(t). Therefore, defining τ = x
c ,

fM(t) = fO(t − τ) = f (0, t − τ) = f (0, t − x
c
)

Summary
Non-distorted and non-attenuated propagation from O to M is written:

f (x , t) = F(t − x
c
) ∀ x and t

Remark
If F takes the same value for two spatial positions, we may assume:

t1 −
x1

c
= t2 −

x2

c
if t2 > t1, then (x2 − x1) = c(t2 − t1) > 0
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PPHW: Definitions (1/2)

Progressive wave
A wave propagating in t − x

c without distortion following the direction of positive values of
x at a velocity c constitutes a progressive wave.

2 types :
Mechanical waves: need a physical support to propagate (p.e. elastic...)

Electromagnetic waves: don’t need a physical support to propagate (perturbations
of electromagnetic field in vaccum)

Wave function
A wave can be characterized by its:

Amplitude (value)

Propagation velocity (phase velocity)

Physical properties of a wave are described by a mathematical function called the
wave function:

Ψ(x , y, z, t)
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PPHW: Definitions (2/2)

Wave surface or wavefront
The set of points in space for which the wave function has the same value at time t is called wave surface or wavefront.

The wavefront evolves in space and time, and may be :

spherical (point sources)

cylindrical (line sources)

plane (infinite sources)

Plane wave approximation
At far distances straight rays are quasi-parallel. If the propagation is unique at any point of space for all time, then
the value of the quantity displacing depends on time but does not depend on the point considered in any plane (P)
orthogonal to the propagation direction. Such plane (P) is called a wave plane and such wave is called Plane Wave.
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PPHW and characteristics

Interest:
Complex representation of sinusoidal functions.

Any periodic function (in space/time) can be represented as a weighted summation
of sinusoids (Fourier Series).

Characteristics
We define Ψ(0, t) = Acos[ωt + ϕ].

If propagation takes place along x-axis, then it is called
a Plane Progressive Harmonic Wave:

Ψ(x , t) = Acos
[
ω
(

t − x
c

)
+ ϕ

]
Ψ(x , t): wave function

A: real amplitude of wave → A = max|Ψ(x , t)|
ω: angular frequency (rad/s)

ϕ: phase at x = 0 and t = 0

Φ = ω
(
t − x

c

)
+ ϕ: phase of wave at fixed position and time.

(CYU) 2nd year - Physics course 8 / 11



PPHW and characteristics

Interest:
Complex representation of sinusoidal functions.

Any periodic function (in space/time) can be represented as a weighted summation
of sinusoids (Fourier Series).

Characteristics
We define Ψ(0, t) = Acos[ωt + ϕ].

If propagation takes place along x-axis, then it is called
a Plane Progressive Harmonic Wave:

Ψ(x , t) = Acos
[
ω
(

t − x
c

)
+ ϕ

]
Ψ(x , t): wave function

A: real amplitude of wave → A = max|Ψ(x , t)|
ω: angular frequency (rad/s)

ϕ: phase at x = 0 and t = 0

Φ = ω
(
t − x

c

)
+ ϕ: phase of wave at fixed position and time.

(CYU) 2nd year - Physics course 8 / 11



PPHW and characteristics

Interest:
Complex representation of sinusoidal functions.

Any periodic function (in space/time) can be represented as a weighted summation
of sinusoids (Fourier Series).

Characteristics
We define Ψ(0, t) = Acos[ωt + ϕ].

If propagation takes place along x-axis, then it is called
a Plane Progressive Harmonic Wave:

Ψ(x , t) = Acos
[
ω
(

t − x
c

)
+ ϕ

]
Ψ(x , t): wave function

A: real amplitude of wave → A = max|Ψ(x , t)|
ω: angular frequency (rad/s)

ϕ: phase at x = 0 and t = 0

Φ = ω
(
t − x

c

)
+ ϕ: phase of wave at fixed position and time.

(CYU) 2nd year - Physics course 8 / 11



PPHW and characteristics

Interest:
Complex representation of sinusoidal functions.

Any periodic function (in space/time) can be represented as a weighted summation
of sinusoids (Fourier Series).

Characteristics
We define Ψ(0, t) = Acos[ωt + ϕ]. If propagation takes place along x-axis, then it is called
a Plane Progressive Harmonic Wave:

Ψ(x , t) = Acos
[
ω
(

t − x
c

)
+ ϕ

]

Ψ(x , t): wave function

A: real amplitude of wave → A = max|Ψ(x , t)|
ω: angular frequency (rad/s)

ϕ: phase at x = 0 and t = 0

Φ = ω
(
t − x

c

)
+ ϕ: phase of wave at fixed position and time.

(CYU) 2nd year - Physics course 8 / 11



PPHW and characteristics

Interest:
Complex representation of sinusoidal functions.

Any periodic function (in space/time) can be represented as a weighted summation
of sinusoids (Fourier Series).

Characteristics
We define Ψ(0, t) = Acos[ωt + ϕ]. If propagation takes place along x-axis, then it is called
a Plane Progressive Harmonic Wave:

Ψ(x , t) = Acos
[
ω
(

t − x
c

)
+ ϕ

]
Ψ(x , t): wave function

A: real amplitude of wave → A = max|Ψ(x , t)|
ω: angular frequency (rad/s)

ϕ: phase at x = 0 and t = 0

Φ = ω
(
t − x

c

)
+ ϕ: phase of wave at fixed position and time.

(CYU) 2nd year - Physics course 8 / 11



PPHW and characteristics

Interest:
Complex representation of sinusoidal functions.

Any periodic function (in space/time) can be represented as a weighted summation
of sinusoids (Fourier Series).

Characteristics
We define Ψ(0, t) = Acos[ωt + ϕ]. If propagation takes place along x-axis, then it is called
a Plane Progressive Harmonic Wave:

Ψ(x , t) = Acos
[
ω
(

t − x
c

)
+ ϕ

]
Ψ(x , t): wave function

A: real amplitude of wave → A = max|Ψ(x , t)|

ω: angular frequency (rad/s)

ϕ: phase at x = 0 and t = 0

Φ = ω
(
t − x

c

)
+ ϕ: phase of wave at fixed position and time.

(CYU) 2nd year - Physics course 8 / 11



PPHW and characteristics

Interest:
Complex representation of sinusoidal functions.

Any periodic function (in space/time) can be represented as a weighted summation
of sinusoids (Fourier Series).

Characteristics
We define Ψ(0, t) = Acos[ωt + ϕ]. If propagation takes place along x-axis, then it is called
a Plane Progressive Harmonic Wave:

Ψ(x , t) = Acos
[
ω
(

t − x
c

)
+ ϕ

]
Ψ(x , t): wave function

A: real amplitude of wave → A = max|Ψ(x , t)|
ω: angular frequency (rad/s)

ϕ: phase at x = 0 and t = 0

Φ = ω
(
t − x

c

)
+ ϕ: phase of wave at fixed position and time.

(CYU) 2nd year - Physics course 8 / 11



PPHW and characteristics

Interest:
Complex representation of sinusoidal functions.

Any periodic function (in space/time) can be represented as a weighted summation
of sinusoids (Fourier Series).

Characteristics
We define Ψ(0, t) = Acos[ωt + ϕ]. If propagation takes place along x-axis, then it is called
a Plane Progressive Harmonic Wave:

Ψ(x , t) = Acos
[
ω
(

t − x
c

)
+ ϕ

]
Ψ(x , t): wave function

A: real amplitude of wave → A = max|Ψ(x , t)|
ω: angular frequency (rad/s)

ϕ: phase at x = 0 and t = 0

Φ = ω
(
t − x

c

)
+ ϕ: phase of wave at fixed position and time.

(CYU) 2nd year - Physics course 8 / 11



PPHW and characteristics

Interest:
Complex representation of sinusoidal functions.

Any periodic function (in space/time) can be represented as a weighted summation
of sinusoids (Fourier Series).

Characteristics
We define Ψ(0, t) = Acos[ωt + ϕ]. If propagation takes place along x-axis, then it is called
a Plane Progressive Harmonic Wave:

Ψ(x , t) = Acos
[
ω
(

t − x
c

)
+ ϕ

]
Ψ(x , t): wave function

A: real amplitude of wave → A = max|Ψ(x , t)|
ω: angular frequency (rad/s)

ϕ: phase at x = 0 and t = 0

Φ = ω
(
t − x

c

)
+ ϕ: phase of wave at fixed position and time.

(CYU) 2nd year - Physics course 8 / 11



PPHW periodicities

Time periodicity Space periodicity

ω: angular frequency → ω = 2πf (rad.s-1) ~k : angular wavenumber, wavevector → k = |~k | = 2πσ (rad.m-1)

f : frequency → f = 1
T (Hz = s-1) σ: wavenumber → σ = 1

λ (m-1)

T : period (s) λ: spatial period, wavelength (m)

Ψ(x , t) = Acos
[
ω
(

t − x
c

)
+ ϕ

]
≡ Ψ(x , t) = Acos

[
ωt − ωx

c
+ ϕ

]
with

[
ω
c

]
= rad.s-1

m.s-1 = rad.m-1

Summary

Ψ(x , t) = Acos [ωt − kx + ϕ]

with:

k = ω
c

and

phase velocity c = ω
k = 2πf

2πσ = λf = λ
T (m.s-1)
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T : period (s) λ: spatial period, wavelength (m)

Ψ(x , t) = Acos
[
ω
(

t − x
c

)
+ ϕ

]
≡ Ψ(x , t) = Acos

[
ωt − ωx

c
+ ϕ

]
with

[
ω
c

]
= rad.s-1

m.s-1 = rad.m-1

Summary

Ψ(x , t) = Acos [ωt − kx + ϕ]

with:

k = ω
c

and

phase velocity c = ω
k = 2πf

2πσ = λf = λ
T (m.s-1)
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Fundamental property of wave propagation and Wave Equation

We have seen that a propagation phenomenon could be described by:

Ψ(x , t) = F(t − x
c
) for x > 0

It is also possible to describe a regressive wave as:

Ψ(x , t) = G(t +
x
c
) for x < 0

General case
From superposition principle:

Ψ(x , t) = F(t − x
c
) + G(t +

x
c
)

We will study the first and second derivatives of Ψ(x , t)...We fix:

u = t − x
c

v = t + x
c

Wave Equation

∂2Ψ
∂x2 =

1
c2

∂2Ψ
∂t2
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