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Longitudinal Vibrations in a Bar (1/2)

Problem

Young’s macroscopic model states that a cylindrical aluminum solid bar, with density ρ,
length l and cross-section S undergoes a relative elongation:

∆l
l

=
1
E
· F

S

under the effect of a stretching force F following the principal axis of the bar (Ox); the
constant E is the Young’s modulus of the metal.

We will neglect the lateral variations of the cross-section of the bar.

During a disturbance, the bar element between the parallel planes at x and x + ∆x dis-
place respectively s(x , t) and s(x + ∆x , t) at t with respect to their equilibrium position as
follows:
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Longitudinal Vibrations in a Bar (2/2)

Problem solving:
1 State the relation of the relative elongation when the system is out-of-equilibrium.

2 From Hooke’s law, state the relation between the tension T (x , t) and the enlongation.

3 Applying Newton’s second law to the cross-section element (x , x + ∆x) with mass
∆m = ρ∆V , state the differential equation that governs the dynamics of the system.

Summary

∂2s
∂x2 =

ρ

E
∂2s
∂t2 ↔ ∂2s

∂x2 =
1

c2
∂2s
∂t2

with c =
√

E
ρ ;

c: velocity (m.s-1)

E: Young’s modulus (N.m-2)

ρ: density (kg.m-3)

For aluminum, E = 70 GPa, ρ = 2700 kg.m-3 and c ≈ 5092 m.s-1
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Transverse Vibrations in a String (1/3)

Problem

Let a string fixed to a support at x = 0 with a free extremity at x = L subjected to a force F .

Experience shows that a disturbance, created by displacing the equilibrium position of the
string, splits into two parts which propagate in opposite directions at the same velocity.

The string is assumed to be homogeneous and inextensible, of linear mass µ, strectched
horizontally (along Ox axis) with a constant force F . We will neglect the force of gravity
due to g.

The string, displaced from its equilibrium position acquires a movement described at time t
by the quasi-vertical displacement u(x , t) of a point M of coordinate x .

We will admit small θ (weak curvature of the string). In this case we consider the approxi-
mations of small angles so as θ is close to 0: sinθ = θ, cosθ = 1, tanθ = θ.

(CYU) 2nd year - Physics course 9 / 15



Transverse Vibrations in a String (1/3)

Problem

Let a string fixed to a support at x = 0 with a free extremity at x = L subjected to a force F .

Experience shows that a disturbance, created by displacing the equilibrium position of the
string, splits into two parts which propagate in opposite directions at the same velocity.

The string is assumed to be homogeneous and inextensible, of linear mass µ, strectched
horizontally (along Ox axis) with a constant force F . We will neglect the force of gravity
due to g.

The string, displaced from its equilibrium position acquires a movement described at time t
by the quasi-vertical displacement u(x , t) of a point M of coordinate x .

We will admit small θ (weak curvature of the string). In this case we consider the approxi-
mations of small angles so as θ is close to 0: sinθ = θ, cosθ = 1, tanθ = θ.

(CYU) 2nd year - Physics course 9 / 15



Transverse Vibrations in a String (1/3)

Problem

Let a string fixed to a support at x = 0 with a free extremity at x = L subjected to a force F .

Experience shows that a disturbance, created by displacing the equilibrium position of the
string, splits into two parts which propagate in opposite directions at the same velocity.

The string is assumed to be homogeneous and inextensible, of linear mass µ, strectched
horizontally (along Ox axis) with a constant force F . We will neglect the force of gravity
due to g.

The string, displaced from its equilibrium position acquires a movement described at time t
by the quasi-vertical displacement u(x , t) of a point M of coordinate x .

We will admit small θ (weak curvature of the string). In this case we consider the approxi-
mations of small angles so as θ is close to 0: sinθ = θ, cosθ = 1, tanθ = θ.

(CYU) 2nd year - Physics course 9 / 15



Transverse Vibrations in a String (1/3)

Problem

Let a string fixed to a support at x = 0 with a free extremity at x = L subjected to a force F .

Experience shows that a disturbance, created by displacing the equilibrium position of the
string, splits into two parts which propagate in opposite directions at the same velocity.

The string is assumed to be homogeneous and inextensible, of linear mass µ, strectched
horizontally (along Ox axis) with a constant force F . We will neglect the force of gravity
due to g.

The string, displaced from its equilibrium position acquires a movement described at time t
by the quasi-vertical displacement u(x , t) of a point M of coordinate x .

We will admit small θ (weak curvature of the string). In this case we consider the approxi-
mations of small angles so as θ is close to 0: sinθ = θ, cosθ = 1, tanθ = θ.

(CYU) 2nd year - Physics course 9 / 15



Transverse Vibrations in a String (1/3)

Problem

Let a string fixed to a support at x = 0 with a free extremity at x = L subjected to a force F .

Experience shows that a disturbance, created by displacing the equilibrium position of the
string, splits into two parts which propagate in opposite directions at the same velocity.

The string is assumed to be homogeneous and inextensible, of linear mass µ, strectched
horizontally (along Ox axis) with a constant force F . We will neglect the force of gravity
due to g.

The string, displaced from its equilibrium position acquires a movement described at time t
by the quasi-vertical displacement u(x , t) of a point M of coordinate x .

We will admit small θ (weak curvature of the string). In this case we consider the approxi-
mations of small angles so as θ is close to 0: sinθ = θ, cosθ = 1, tanθ = θ.

(CYU) 2nd year - Physics course 9 / 15



Transverse Vibrations in a String (1/3)

Problem

Let a string fixed to a support at x = 0 with a free extremity at x = L subjected to a force F .

Experience shows that a disturbance, created by displacing the equilibrium position of the
string, splits into two parts which propagate in opposite directions at the same velocity.

The string is assumed to be homogeneous and inextensible, of linear mass µ, strectched
horizontally (along Ox axis) with a constant force F . We will neglect the force of gravity
due to g.

The string, displaced from its equilibrium position acquires a movement described at time t
by the quasi-vertical displacement u(x , t) of a point M of coordinate x .

We will admit small θ (weak curvature of the string). In this case we consider the approxi-
mations of small angles so as θ is close to 0:

sinθ = θ, cosθ = 1, tanθ = θ.

(CYU) 2nd year - Physics course 9 / 15



Transverse Vibrations in a String (1/3)

Problem

Let a string fixed to a support at x = 0 with a free extremity at x = L subjected to a force F .

Experience shows that a disturbance, created by displacing the equilibrium position of the
string, splits into two parts which propagate in opposite directions at the same velocity.

The string is assumed to be homogeneous and inextensible, of linear mass µ, strectched
horizontally (along Ox axis) with a constant force F . We will neglect the force of gravity
due to g.

The string, displaced from its equilibrium position acquires a movement described at time t
by the quasi-vertical displacement u(x , t) of a point M of coordinate x .

We will admit small θ (weak curvature of the string). In this case we consider the approxi-
mations of small angles so as θ is close to 0: sinθ = θ, cosθ = 1, tanθ = θ.

(CYU) 2nd year - Physics course 9 / 15



Transverse Vibrations in a String (2/3)

Description of the quasi-transversal displacement

We consider the small element between x and x + ∆x associated to the points M and N
(length MN=∆x). At t > 0, the element MN is subjected to:

Applying Newton’s second law, we can write in vector notation:

∑~F = ∆m ·~a

∆m ·~g + ~FM + ~FN = ∆m ·~a
~FM + ~FN = ∆m ·~a
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Transverse Vibrations in a String (3/3)

Problem solving:
1 Study the horizontal dynamics in order to demonstrate that

T (x , t) = T (x + ∆x , t) = const = F

.

2 Study the vertical dynamics.

Summary

∂2u
∂x2 =

1
c2

∂2u
∂t2

with c =
√

F
µ ;

c: velocity (m.s-1)

F : Force (N)

µ: linear mass (kg.m-1)
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Propagation of Sound Waves in Fluids (1/3)

Definition: We assume a perfect fluid without viscosity and thermal conductivity (or negli-
gible) and for whose equilibrium states are reversible.

Problem

We will consider that in the absence of sound propagation, the following characteristics/physical properties of the fluid
at equilibrium are constant and uniform in space and time:

density ρ

pressure p

temperature T

During the sound propagation, the system is out-of-equilibrium and we will consider:

small amplitude displacements around equilibrium position

longitudinal waves for which the displacements are parallel to the propagation direction

frequencies corresponding to audible: 20 Hz ≤ f ≤ 20 kHz (Infrasound: f < 20 Hz, Ultrasound: f > 20 kHz)

We consider sound propagation through a pipe of cross-section S containing a perfect fluid.

The vibration is induced by a piston shaking at x = 0, which transfers its movement to the fluid slices close to it.

(CYU) 2nd year - Physics course 13 / 15
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Propagation of Sound Waves in Fluids (2/3)

Description of the propagation mechanism

The movement of the piston is a displacement.

It begins at x = 0 and produces a dilation of the fluid
slice in contact with the piston.

Because the volume contained in a slice varies, this
produces a change in pressure.

This overpressure acts on the neighbouring slice, caus-
ing its displacement and varying its pressure (domino
effect).

We will admit that under the presence of the sound wave, the strains of the infinitesimal element of volume Sdx are
performed by translation along the Ox axis.

As a result, during infinitesimal time dt , the fluid slice at x will displace a quantity u(x , t) (enlongation of movement).

During dt , the slice x + dx will displace at first approximation u + du and so, u(x + dx , t) = u(x , t) + ∂u
∂x dx .

Out-of-equilibrium, relative variation of volume of the slice is:

∆V
V

=
S
(

u + ∂u
∂x dx − u

)
Sdx

=
∂u
∂x

Therefore, knowing elongation we can define:

velocity: v = ∂u
∂t

dilation: θ = ∂u
∂x
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Propagation of Sound Waves in Fluids (3/3)
Problem solving:

1 State the Newton’s second law for non viscous fluids (Euler’s equation).

2 The experience shows that if pressure exterted is small, the deformation is proportional to the pres-
sure, with a proportionality coefficient χs called compressibility:

∂u
∂x

= −χsp(x , t)

3 Combine the preceding results in order to obtain the wave equation for sound waves.

Summary

∂2u
∂x2

=
1

c2
∂2u
∂t2

with c =
√

1
ρχs

, ρ: density (kg.m-3) and χs : compressibility (Pa-1)

The general solution of the equation is: u = u1
(
t − x

c
)
+ u2

(
t − x

c
)

Otherwise it makes it possible to show that:

∂

∂x

(
∂p
∂x

)
→ ∂2p

∂x2
= −ρ

∂2v
∂t∂x

∂

∂t

(
∂

∂t

(
∂u
∂x

))
→ ∂2v

∂x∂t
= −χs

∂2p

∂t2

∂2p

∂x2
=

1

c2
∂2p

∂t2
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