

Physics course: Mechanical Waves

A. Arciniegas

IUT Cergy-Pontoise, Dep GEII, site de Neuville

- 1 Foreword
- 2 Longitudinal Vibrations in a Bar
- 3 Transverse Vibrations in a String
- 4 Propagation of Sound Waves in Fluids

Foreword

In the following lectures we will study different cases of mechanical waves:

In the following lectures we will study different cases of mechanical waves:

- Longitudinal Vibrations in a Bar

In the following lectures we will study different cases of mechanical waves:

- Longitudinal Vibrations in a Bar
- Transverse Vibrations in a String

In the following lectures we will study different cases of mechanical waves:

- Longitudinal Vibrations in a Bar
- Transverse Vibrations in a String
- Propagation of Sound Waves in Fluids

Longitudinal Vibrations in a Bar

Longitudinal Vibrations in a Bar (1/2)

Problem

Young's macroscopic model states that a cylindrical aluminum solid bar, with density ρ , length l and cross-section S undergoes a relative elongation:

Longitudinal Vibrations in a Bar (1/2)

Problem

Young's macroscopic model states that a cylindrical aluminum solid bar, with density ρ , length l and cross-section S undergoes a relative elongation:

$$\frac{\Delta l}{l} = \frac{1}{E} \cdot \frac{F}{S}$$

Longitudinal Vibrations in a Bar (1/2)

Problem

Young's macroscopic model states that a cylindrical aluminum solid bar, with density ρ , length l and cross-section S undergoes a relative elongation:

$$\frac{\Delta l}{l} = \frac{1}{E} \cdot \frac{F}{S}$$

under the effect of a stretching force F following the principal axis of the bar (Ox); the constant E is the Young's modulus of the metal.

Longitudinal Vibrations in a Bar (1/2)

Problem

Young's macroscopic model states that a cylindrical aluminum solid bar, with density ρ , length l and cross-section S undergoes a relative elongation:

$$\frac{\Delta l}{l} = \frac{1}{E} \cdot \frac{F}{S}$$

under the effect of a stretching force F following the principal axis of the bar (Ox); the constant E is the Young's modulus of the metal.

We will neglect the lateral variations of the cross-section of the bar.

Longitudinal Vibrations in a Bar (1/2)

Problem

Young's macroscopic model states that a cylindrical aluminum solid bar, with density ρ , length l and cross-section S undergoes a relative elongation:

$$\frac{\Delta l}{l} = \frac{1}{E} \cdot \frac{F}{S}$$

under the effect of a stretching force F following the principal axis of the bar (Ox); the constant E is the Young's modulus of the metal.

We will neglect the lateral variations of the cross-section of the bar.

During a disturbance, the bar element between the parallel planes at x and $x + \Delta x$ displace respectively $s(x, t)$ and $s(x + \Delta x, t)$ at t with respect to their equilibrium position as follows:

Longitudinal Vibrations in a Bar (1/2)

Problem

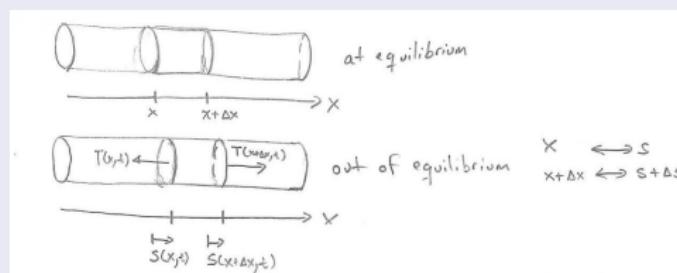
Young's macroscopic model states that a cylindrical aluminum solid bar, with density ρ , length l and cross-section S undergoes a relative elongation:

$$\frac{\Delta l}{l} = \frac{1}{E} \cdot \frac{F}{S}$$

under the effect of a stretching force F following the principal axis of the bar (Ox); the constant E is the Young's modulus of the metal.

We will neglect the lateral variations of the cross-section of the bar.

During a disturbance, the bar element between the parallel planes at x and $x + \Delta x$ displace respectively $s(x, t)$ and $s(x + \Delta x, t)$ at t with respect to their equilibrium position as follows:



Longitudinal Vibrations in a Bar (2/2)

Problem solving:

- 1 State the relation of the relative elongation when the system is out-of-equilibrium.

Longitudinal Vibrations in a Bar (2/2)

Problem solving:

- 1 State the relation of the relative elongation when the system is out-of-equilibrium.
- 2 From Hooke's law, state the relation between the tension $T(x, t)$ and the elongation.

Longitudinal Vibrations in a Bar (2/2)

Problem solving:

- 1 State the relation of the relative elongation when the system is out-of-equilibrium.
- 2 From Hooke's law, state the relation between the tension $T(x, t)$ and the elongation.
- 3 Applying Newton's second law to the cross-section element $(x, x + \Delta x)$ with mass $\Delta m = \rho \Delta V$, state the differential equation that governs the dynamics of the system.

Longitudinal Vibrations in a Bar (2/2)

Problem solving:

- 1 State the relation of the relative elongation when the system is out-of-equilibrium.
- 2 From Hooke's law, state the relation between the tension $T(x, t)$ and the elongation.
- 3 Applying Newton's second law to the cross-section element $(x, x + \Delta x)$ with mass $\Delta m = \rho \Delta V$, state the differential equation that governs the dynamics of the system.

Summary

$$\frac{\partial^2 s}{\partial x^2} = \frac{\rho}{E} \frac{\partial^2 s}{\partial t^2}$$

Longitudinal Vibrations in a Bar (2/2)

Problem solving:

- 1 State the relation of the relative elongation when the system is out-of-equilibrium.
- 2 From Hooke's law, state the relation between the tension $T(x, t)$ and the elongation.
- 3 Applying Newton's second law to the cross-section element $(x, x + \Delta x)$ with mass $\Delta m = \rho \Delta V$, state the differential equation that governs the dynamics of the system.

Summary

$$\frac{\partial^2 s}{\partial x^2} = \frac{\rho}{E} \frac{\partial^2 s}{\partial t^2} \leftrightarrow \frac{\partial^2 s}{\partial x^2} = \frac{1}{c^2} \frac{\partial^2 s}{\partial t^2}$$

with $c = \sqrt{\frac{E}{\rho}}$;

- c : velocity (m.s^{-1})
- E : Young's modulus (N.m^{-2})
- ρ : density (kg.m^{-3})

Longitudinal Vibrations in a Bar (2/2)

Problem solving:

- 1 State the relation of the relative elongation when the system is out-of-equilibrium.
- 2 From Hooke's law, state the relation between the tension $T(x, t)$ and the elongation.
- 3 Applying Newton's second law to the cross-section element $(x, x + \Delta x)$ with mass $\Delta m = \rho \Delta V$, state the differential equation that governs the dynamics of the system.

Summary

$$\frac{\partial^2 s}{\partial x^2} = \frac{\rho}{E} \frac{\partial^2 s}{\partial t^2} \leftrightarrow \frac{\partial^2 s}{\partial x^2} = \frac{1}{c^2} \frac{\partial^2 s}{\partial t^2}$$

with $c = \sqrt{\frac{E}{\rho}}$;

- c : velocity (m.s^{-1})
- E : Young's modulus (N.m^{-2})
- ρ : density (kg.m^{-3})

For aluminum, $E = 70 \text{ GPa}$, $\rho = 2700 \text{ kg.m}^{-3}$ and $c \approx 5092 \text{ m.s}^{-1}$

Transverse Vibrations in a String

Transverse Vibrations in a String (1/3)

Problem

Let a string fixed to a support at $x = 0$ with a free extremity at $x = L$ subjected to a force F .

Transverse Vibrations in a String (1/3)

Problem

Let a string fixed to a support at $x = 0$ with a free extremity at $x = L$ subjected to a force F .

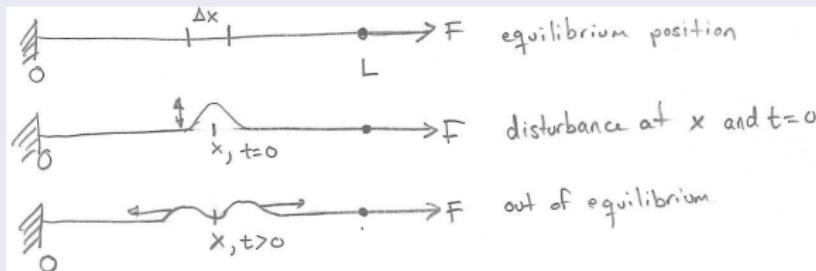
Experience shows that a disturbance, created by displacing the equilibrium position of the string, splits into two parts which propagate in opposite directions at the same velocity.

Transverse Vibrations in a String (1/3)

Problem

Let a string fixed to a support at $x = 0$ with a free extremity at $x = L$ subjected to a force F .

Experience shows that a disturbance, created by displacing the equilibrium position of the string, splits into two parts which propagate in opposite directions at the same velocity.

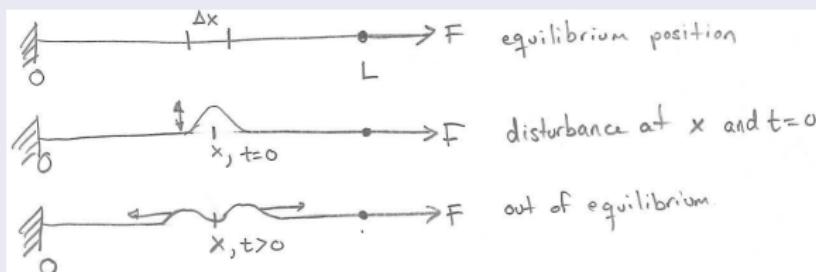


Transverse Vibrations in a String (1/3)

Problem

Let a string fixed to a support at $x = 0$ with a free extremity at $x = L$ subjected to a force F .

Experience shows that a disturbance, created by displacing the equilibrium position of the string, splits into two parts which propagate in opposite directions at the same velocity.



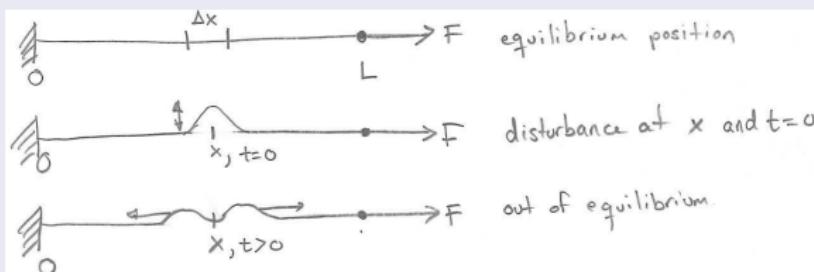
The string is assumed to be homogeneous and inextensible, of linear mass μ , stretched horizontally (along Ox axis) with a constant force F . We will neglect the force of gravity due to g .

Transverse Vibrations in a String (1/3)

Problem

Let a string fixed to a support at $x = 0$ with a free extremity at $x = L$ subjected to a force F .

Experience shows that a disturbance, created by displacing the equilibrium position of the string, splits into two parts which propagate in opposite directions at the same velocity.



The string is assumed to be homogeneous and inextensible, of linear mass μ , stretched horizontally (along Ox axis) with a constant force F . We will neglect the force of gravity due to g .

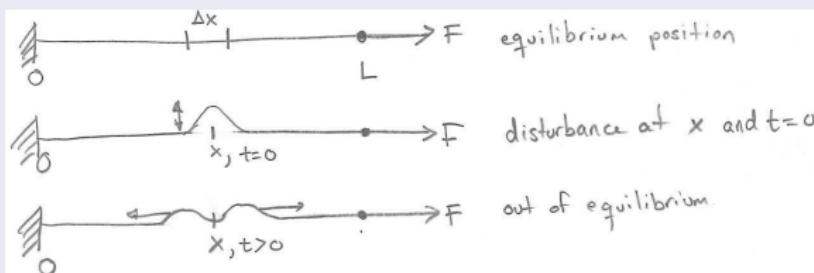
The string, displaced from its equilibrium position acquires a movement described at time t by the quasi-vertical displacement $u(x, t)$ of a point M of coordinate x .

Transverse Vibrations in a String (1/3)

Problem

Let a string fixed to a support at $x = 0$ with a free extremity at $x = L$ subjected to a force F .

Experience shows that a disturbance, created by displacing the equilibrium position of the string, splits into two parts which propagate in opposite directions at the same velocity.



The string is assumed to be homogeneous and inextensible, of linear mass μ , stretched horizontally (along Ox axis) with a constant force F . We will neglect the force of gravity due to g .

The string, displaced from its equilibrium position acquires a movement described at time t by the quasi-vertical displacement $u(x, t)$ of a point M of coordinate x .

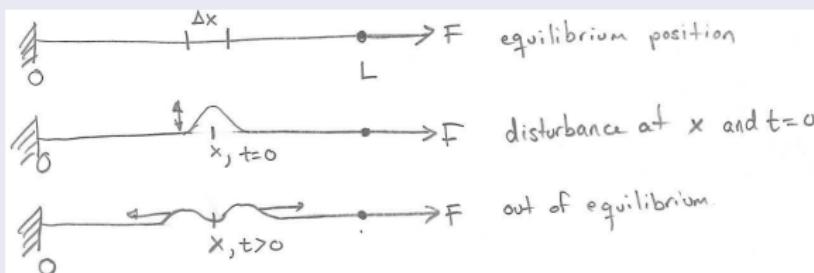
We will admit small θ (weak curvature of the string). In this case we consider the approximations of small angles so as θ is close to 0:

Transverse Vibrations in a String (1/3)

Problem

Let a string fixed to a support at $x = 0$ with a free extremity at $x = L$ subjected to a force F .

Experience shows that a disturbance, created by displacing the equilibrium position of the string, splits into two parts which propagate in opposite directions at the same velocity.



The string is assumed to be homogeneous and inextensible, of linear mass μ , stretched horizontally (along Ox axis) with a constant force F . We will neglect the force of gravity due to g .

The string, displaced from its equilibrium position acquires a movement described at time t by the quasi-vertical displacement $u(x, t)$ of a point M of coordinate x .

We will admit small θ (weak curvature of the string). In this case we consider the approximations of small angles so as θ is close to 0: $\sin\theta = \theta$, $\cos\theta = 1$, $\tan\theta = \theta$.

Transverse Vibrations in a String (2/3)

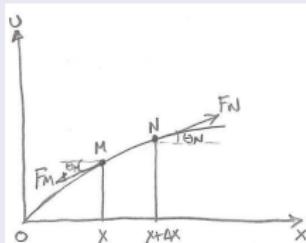
Description of the quasi-transversal displacement

We consider the small element between x and $x + \Delta x$ associated to the points M and N (length $MN = \Delta x$). At $t > 0$, the element MN is subjected to:

Transverse Vibrations in a String (2/3)

Description of the quasi-transversal displacement

We consider the small element between x and $x + \Delta x$ associated to the points M and N (length $MN = \Delta x$). At $t > 0$, the element MN is subjected to:



- Its weight, $\Delta m \cdot \vec{g} = \rho \cdot \Delta x \cdot \vec{g}$ (neglected)
- The tangential force F_M exerted in M by the left side of the string, $\vec{F}_M = \vec{T}(x, t)$
- The tangential force F_N exerted in N by the right side of the string, $\vec{F}_N = \vec{T}(x + \Delta x, t)$

$\vec{T}(x, t)$: the tension of the string from Newton's third law.

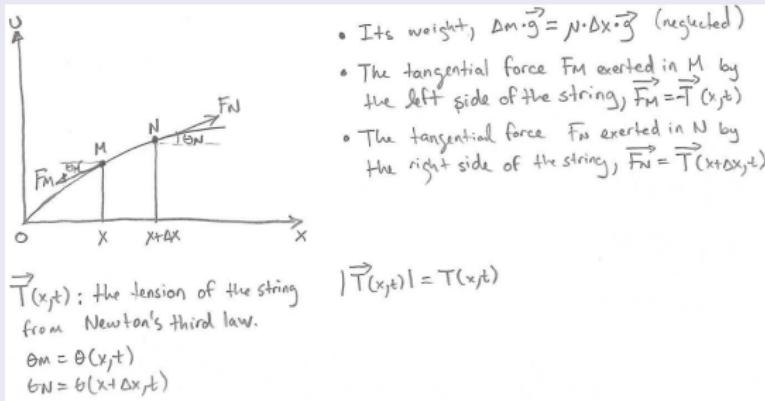
$$\theta_M = \theta(x, t)$$
$$\theta_N = \theta(x + \Delta x, t)$$

$$|\vec{T}(x, t)| = T(x, t)$$

Transverse Vibrations in a String (2/3)

Description of the quasi-transversal displacement

We consider the small element between x and $x + \Delta x$ associated to the points M and N (length $MN = \Delta x$). At $t > 0$, the element MN is subjected to:

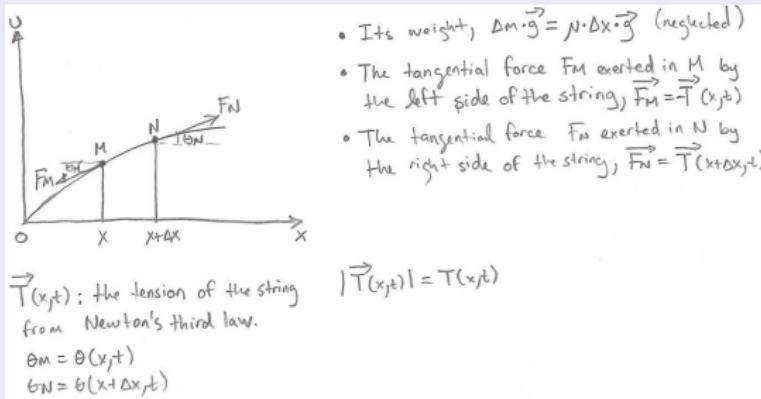


Applying Newton's second law, we can write in vector notation:

Transverse Vibrations in a String (2/3)

Description of the quasi-transversal displacement

We consider the small element between x and $x + \Delta x$ associated to the points M and N (length $MN = \Delta x$). At $t > 0$, the element MN is subjected to:



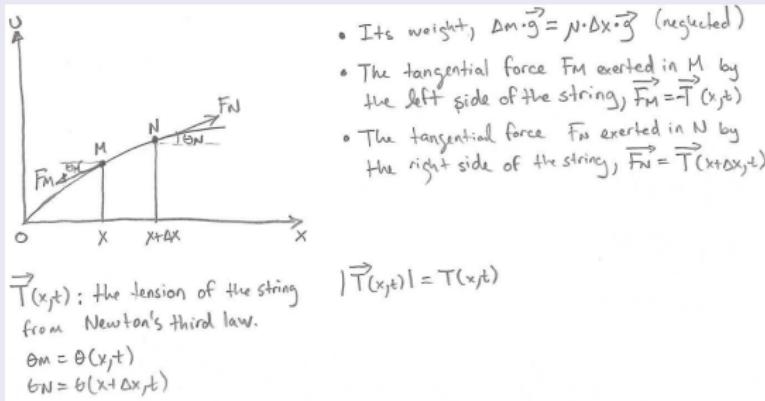
Applying Newton's second law, we can write in vector notation:

$$\sum \vec{F} = \Delta m \cdot \vec{a}$$

Transverse Vibrations in a String (2/3)

Description of the quasi-transversal displacement

We consider the small element between x and $x + \Delta x$ associated to the points M and N (length $MN = \Delta x$). At $t > 0$, the element MN is subjected to:



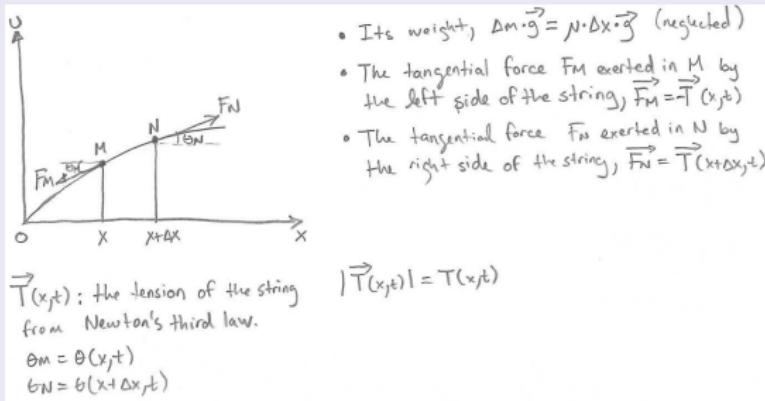
Applying Newton's second law, we can write in vector notation:

$$\sum \vec{F} = \Delta m \cdot \vec{a}$$
$$\Delta m \cdot \vec{g} + \vec{F}_M + \vec{F}_N = \Delta m \cdot \vec{a}$$

Transverse Vibrations in a String (2/3)

Description of the quasi-transversal displacement

We consider the small element between x and $x + \Delta x$ associated to the points M and N (length $MN = \Delta x$). At $t > 0$, the element MN is subjected to:



Applying Newton's second law, we can write in vector notation:

$$\begin{aligned}\sum \vec{F} &= \Delta m \cdot \vec{a} \\ \Delta m \cdot \vec{g} + \vec{F}_M + \vec{F}_N &= \Delta m \cdot \vec{a} \\ \vec{F}_M + \vec{F}_N &= \Delta m \cdot \vec{a}\end{aligned}$$

Transverse Vibrations in a String (3/3)

Problem solving:

- 1 Study the horizontal dynamics in order to demonstrate that

$$T(x, t) = T(x + \Delta x, t) = \text{const} = F$$

Transverse Vibrations in a String (3/3)

Problem solving:

- 1 Study the horizontal dynamics in order to demonstrate that

$$T(x, t) = T(x + \Delta x, t) = \text{const} = F$$

- 2 Study the vertical dynamics.

Transverse Vibrations in a String (3/3)

Problem solving:

- 1 Study the horizontal dynamics in order to demonstrate that

$$T(x, t) = T(x + \Delta x, t) = \text{const} = F$$

- 2 Study the vertical dynamics.

Summary

$$\frac{\partial^2 u}{\partial x^2} = \frac{1}{c^2} \frac{\partial^2 u}{\partial t^2}$$

with $c = \sqrt{\frac{F}{\mu}}$;

- c : velocity (m.s^{-1})
- F : Force (N)
- μ : linear mass (kg.m^{-1})

Propagation of Sound Waves in Fluids

Propagation of Sound Waves in Fluids (1/3)

Definition: We assume a perfect fluid without viscosity and thermal conductivity (or negligible) and for whose equilibrium states are reversible.

Propagation of Sound Waves in Fluids (1/3)

Definition: We assume a perfect fluid without viscosity and thermal conductivity (or negligible) and for whose equilibrium states are reversible.

Problem

We will consider that in the absence of sound propagation, the following characteristics/physical properties of the fluid at equilibrium are constant and uniform in space and time:

Propagation of Sound Waves in Fluids (1/3)

Definition: We assume a perfect fluid without viscosity and thermal conductivity (or negligible) and for whose equilibrium states are reversible.

Problem

We will consider that in the absence of sound propagation, the following characteristics/physical properties of the fluid at equilibrium are constant and uniform in space and time:

- density ρ
- pressure p
- temperature T

Propagation of Sound Waves in Fluids (1/3)

Definition: We assume a perfect fluid without viscosity and thermal conductivity (or negligible) and for whose equilibrium states are reversible.

Problem

We will consider that in the absence of sound propagation, the following characteristics/physical properties of the fluid at equilibrium are constant and uniform in space and time:

- density ρ
- pressure p
- temperature T

During the sound propagation, the system is out-of-equilibrium and we will consider:

Propagation of Sound Waves in Fluids (1/3)

Definition: We assume a perfect fluid without viscosity and thermal conductivity (or negligible) and for whose equilibrium states are reversible.

Problem

We will consider that in the absence of sound propagation, the following characteristics/physical properties of the fluid at equilibrium are constant and uniform in space and time:

- density ρ
- pressure p
- temperature T

During the sound propagation, the system is out-of-equilibrium and we will consider:

- small amplitude displacements around equilibrium position

Propagation of Sound Waves in Fluids (1/3)

Definition: We assume a perfect fluid without viscosity and thermal conductivity (or negligible) and for whose equilibrium states are reversible.

Problem

We will consider that in the absence of sound propagation, the following characteristics/physical properties of the fluid at equilibrium are constant and uniform in space and time:

- density ρ
- pressure p
- temperature T

During the sound propagation, the system is out-of-equilibrium and we will consider:

- small amplitude displacements around equilibrium position
- longitudinal waves for which the displacements are parallel to the propagation direction

Propagation of Sound Waves in Fluids (1/3)

Definition: We assume a perfect fluid without viscosity and thermal conductivity (or negligible) and for whose equilibrium states are reversible.

Problem

We will consider that in the absence of sound propagation, the following characteristics/physical properties of the fluid at equilibrium are constant and uniform in space and time:

- density ρ
- pressure p
- temperature T

During the sound propagation, the system is out-of-equilibrium and we will consider:

- small amplitude displacements around equilibrium position
- longitudinal waves for which the displacements are parallel to the propagation direction
- frequencies corresponding to audible: $20 \text{ Hz} \leq f \leq 20 \text{ kHz}$ (Infrasound: $f < 20 \text{ Hz}$, Ultrasound: $f > 20 \text{ kHz}$)

Propagation of Sound Waves in Fluids (1/3)

Definition: We assume a perfect fluid without viscosity and thermal conductivity (or negligible) and for whose equilibrium states are reversible.

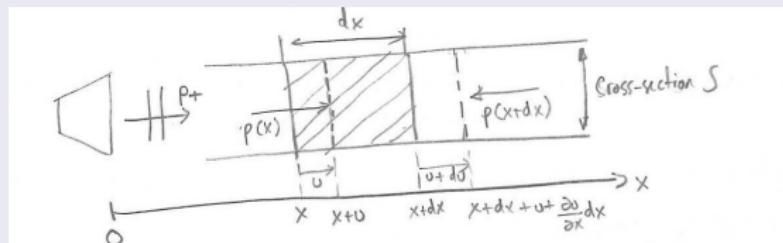
Problem

We will consider that in the absence of sound propagation, the following characteristics/physical properties of the fluid at equilibrium are constant and uniform in space and time:

- density ρ
- pressure p
- temperature T

During the sound propagation, the system is out-of-equilibrium and we will consider:

- small amplitude displacements around equilibrium position
- longitudinal waves for which the displacements are parallel to the propagation direction
- frequencies corresponding to audible: $20 \text{ Hz} \leq f \leq 20 \text{ kHz}$ (Infrasound: $f < 20 \text{ Hz}$, Ultrasound: $f > 20 \text{ kHz}$)



Propagation of Sound Waves in Fluids (1/3)

Definition: We assume a perfect fluid without viscosity and thermal conductivity (or negligible) and for whose equilibrium states are reversible.

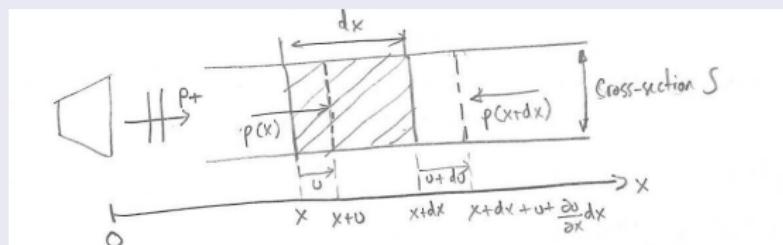
Problem

We will consider that in the absence of sound propagation, the following characteristics/physical properties of the fluid at equilibrium are constant and uniform in space and time:

- density ρ
- pressure p
- temperature T

During the sound propagation, the system is out-of-equilibrium and we will consider:

- small amplitude displacements around equilibrium position
- longitudinal waves for which the displacements are parallel to the propagation direction
- frequencies corresponding to audible: $20 \text{ Hz} \leq f \leq 20 \text{ kHz}$ (Infrasound: $f < 20 \text{ Hz}$, Ultrasound: $f > 20 \text{ kHz}$)



- We consider sound propagation through a pipe of cross-section S containing a perfect fluid.

Propagation of Sound Waves in Fluids (1/3)

Definition: We assume a perfect fluid without viscosity and thermal conductivity (or negligible) and for whose equilibrium states are reversible.

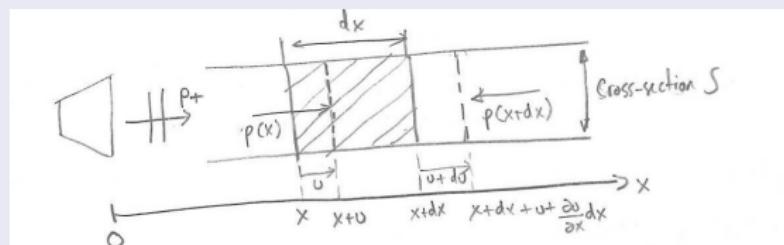
Problem

We will consider that in the absence of sound propagation, the following characteristics/physical properties of the fluid at equilibrium are constant and uniform in space and time:

- density ρ
- pressure p
- temperature T

During the sound propagation, the system is out-of-equilibrium and we will consider:

- small amplitude displacements around equilibrium position
- longitudinal waves for which the displacements are parallel to the propagation direction
- frequencies corresponding to audible: $20 \text{ Hz} \leq f \leq 20 \text{ kHz}$ (Infrasound: $f < 20 \text{ Hz}$, Ultrasound: $f > 20 \text{ kHz}$)

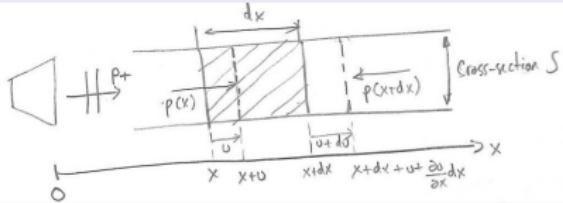


- We consider sound propagation through a pipe of cross-section S containing a perfect fluid.
- The vibration is induced by a piston shaking at $x = 0$, which transfers its movement to the fluid slices close to it.

Propagation of Sound Waves in Fluids (2/3)

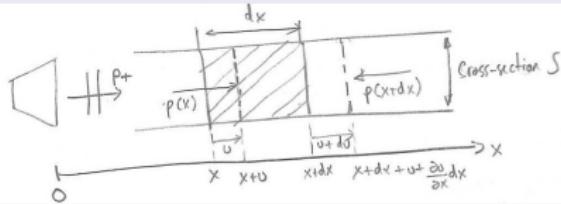
Description of the propagation mechanism

- The movement of the piston is a *displacement*.



Propagation of Sound Waves in Fluids (2/3)

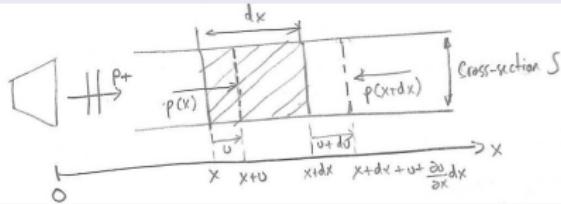
Description of the propagation mechanism



- The movement of the piston is a *displacement*.
- It begins at $x = 0$ and produces a dilation of the fluid slice in contact with the piston.

Propagation of Sound Waves in Fluids (2/3)

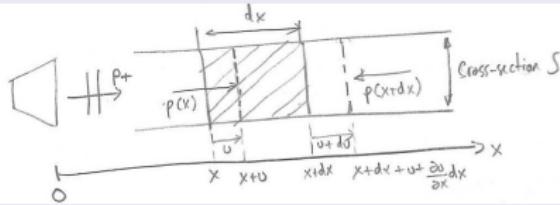
Description of the propagation mechanism



- The movement of the piston is a *displacement*.
- It begins at $x = 0$ and produces a dilation of the fluid slice in contact with the piston.
- Because the volume contained in a slice varies, this produces a change in pressure.

Propagation of Sound Waves in Fluids (2/3)

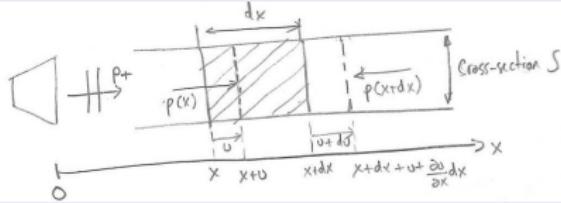
Description of the propagation mechanism



- The movement of the piston is a *displacement*.
- It begins at $x = 0$ and produces a dilation of the fluid slice in contact with the piston.
- Because the volume contained in a slice varies, this produces a change in pressure.
- This *overpressure* acts on the neighbouring slice, causing its displacement and varying its pressure (domino effect).

Propagation of Sound Waves in Fluids (2/3)

Description of the propagation mechanism

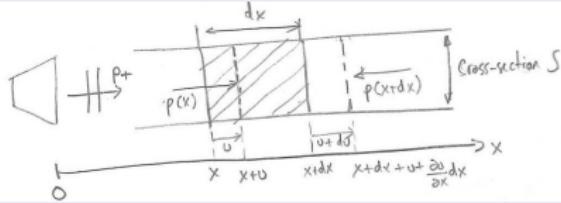


- The movement of the piston is a *displacement*.
- It begins at $x = 0$ and produces a dilation of the fluid slice in contact with the piston.
- Because the volume contained in a slice varies, this produces a change in pressure.
- This *overpressure* acts on the neighbouring slice, causing its displacement and varying its pressure (domino effect).

We will admit that under the presence of the sound wave, the strains of the infinitesimal element of volume Sdx are performed by translation along the Ox axis.

Propagation of Sound Waves in Fluids (2/3)

Description of the propagation mechanism



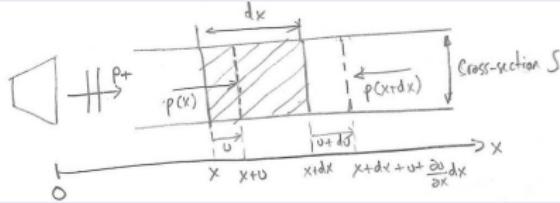
- The movement of the piston is a *displacement*.
- It begins at $x = 0$ and produces a dilation of the fluid slice in contact with the piston.
- Because the volume contained in a slice varies, this produces a change in pressure.
- This *overpressure* acts on the neighbouring slice, causing its displacement and varying its pressure (domino effect).

We will admit that under the presence of the sound wave, the strains of the infinitesimal element of volume Sdx are performed by translation along the Ox axis.

As a result, during infinitesimal time dt , the fluid slice at x will displace a quantity $u(x, t)$ (*enlongation of movement*).

Propagation of Sound Waves in Fluids (2/3)

Description of the propagation mechanism



- The movement of the piston is a *displacement*.
- It begins at $x = 0$ and produces a dilation of the fluid slice in contact with the piston.
- Because the volume contained in a slice varies, this produces a change in pressure.
- This *overpressure* acts on the neighbouring slice, causing its displacement and varying its pressure (domino effect).

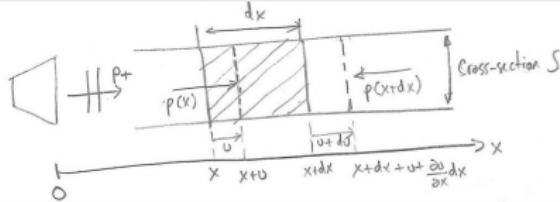
We will admit that under the presence of the sound wave, the strains of the infinitesimal element of volume Sdx are performed by translation along the Ox axis.

As a result, during infinitesimal time dt , the fluid slice at x will displace a quantity $u(x, t)$ (*enlongation of movement*).

During dt , the slice $x + dx$ will displace at first approximation $u + du$ and so, $u(x + dx, t) = u(x, t) + \frac{\partial u}{\partial x} dx$.

Propagation of Sound Waves in Fluids (2/3)

Description of the propagation mechanism



- The movement of the piston is a *displacement*.
- It begins at $x = 0$ and produces a dilation of the fluid slice in contact with the piston.
- Because the volume contained in a slice varies, this produces a change in pressure.
- This *overpressure* acts on the neighbouring slice, causing its displacement and varying its pressure (domino effect).

We will admit that under the presence of the sound wave, the strains of the infinitesimal element of volume Sdx are performed by translation along the Ox axis.

As a result, during infinitesimal time dt , the fluid slice at x will displace a quantity $u(x, t)$ (*enlongation of movement*).

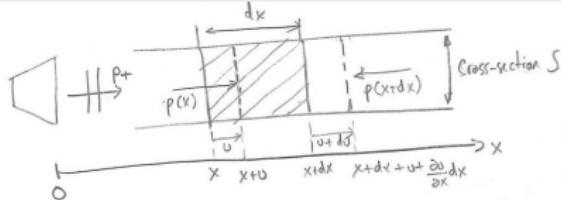
During dt , the slice $x + dx$ will displace at first approximation $u + du$ and so, $u(x + dx, t) = u(x, t) + \frac{\partial u}{\partial x} dx$.

Out-of-equilibrium, relative variation of volume of the slice is:

$$\frac{\Delta V}{V} = \frac{S \left(u + \frac{\partial u}{\partial x} dx - u \right)}{Sdx} = \frac{\partial u}{\partial x}$$

Propagation of Sound Waves in Fluids (2/3)

Description of the propagation mechanism



- The movement of the piston is a *displacement*.
- It begins at $x = 0$ and produces a dilation of the fluid slice in contact with the piston.
- Because the volume contained in a slice varies, this produces a change in pressure.
- This *overpressure* acts on the neighbouring slice, causing its displacement and varying its pressure (domino effect).

We will admit that under the presence of the sound wave, the strains of the infinitesimal element of volume Sdx are performed by translation along the Ox axis.

As a result, during infinitesimal time dt , the fluid slice at x will displace a quantity $u(x, t)$ (*enlongation of movement*).

During dt , the slice $x + dx$ will displace at first approximation $u + du$ and so, $u(x + dx, t) = u(x, t) + \frac{\partial u}{\partial x} dx$.

Out-of-equilibrium, relative variation of volume of the slice is:

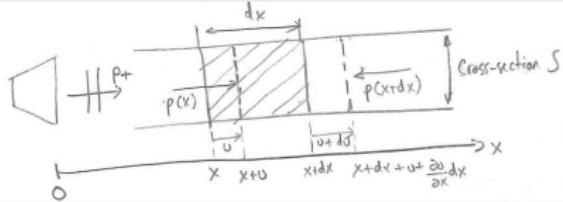
$$\frac{\Delta V}{V} = \frac{S \left(u + \frac{\partial u}{\partial x} dx - u \right)}{Sdx} = \frac{\partial u}{\partial x}$$

Therefore, knowing elongation we can define:

- velocity: $v = \frac{\partial u}{\partial t}$

Propagation of Sound Waves in Fluids (2/3)

Description of the propagation mechanism



- The movement of the piston is a *displacement*.
- It begins at $x = 0$ and produces a dilation of the fluid slice in contact with the piston.
- Because the volume contained in a slice varies, this produces a change in pressure.
- This *overpressure* acts on the neighbouring slice, causing its displacement and varying its pressure (domino effect).

We will admit that under the presence of the sound wave, the strains of the infinitesimal element of volume Sdx are performed by translation along the Ox axis.

As a result, during infinitesimal time dt , the fluid slice at x will displace a quantity $u(x, t)$ (*enlongation of movement*).

During dt , the slice $x + dx$ will displace at first approximation $u + du$ and so, $u(x + dx, t) = u(x, t) + \frac{\partial u}{\partial x} dx$.

Out-of-equilibrium, relative variation of volume of the slice is:

$$\frac{\Delta V}{V} = \frac{S \left(u + \frac{\partial u}{\partial x} dx - u \right)}{Sdx} = \frac{\partial u}{\partial x}$$

Therefore, knowing elongation we can define:

- velocity: $v = \frac{\partial u}{\partial t}$
- dilation: $\theta = \frac{\partial u}{\partial x}$

Propagation of Sound Waves in Fluids (3/3)

Problem solving:

- 1 State the Newton's second law for non viscous fluids (Euler's equation).

Propagation of Sound Waves in Fluids (3/3)

Problem solving:

- 1 State the Newton's second law for non viscous fluids (Euler's equation).
- 2 The experience shows that if pressure exerted is small, the deformation is proportional to the pressure, with a proportionality coefficient χ_s called compressibility:

$$\frac{\partial u}{\partial x} = -\chi_s p(x, t)$$

Propagation of Sound Waves in Fluids (3/3)

Problem solving:

- 1 State the Newton's second law for non viscous fluids (Euler's equation).
- 2 The experience shows that if pressure exerted is small, the deformation is proportional to the pressure, with a proportionality coefficient χ_s called compressibility:

$$\frac{\partial u}{\partial x} = -\chi_s p(x, t)$$

- 3 Combine the preceding results in order to obtain the wave equation for sound waves.

Propagation of Sound Waves in Fluids (3/3)

Problem solving:

- 1 State the Newton's second law for non viscous fluids (Euler's equation).
- 2 The experience shows that if pressure exerted is small, the deformation is proportional to the pressure, with a proportionality coefficient χ_s called compressibility:

$$\frac{\partial u}{\partial x} = -\chi_s p(x, t)$$

- 3 Combine the preceding results in order to obtain the wave equation for sound waves.

Summary

$$\frac{\partial^2 u}{\partial x^2} = \frac{1}{c^2} \frac{\partial^2 u}{\partial t^2}$$

with $c = \sqrt{\frac{1}{\rho \chi_s}}$, ρ : density ($\text{kg} \cdot \text{m}^{-3}$) and χ_s : compressibility (Pa^{-1})

Propagation of Sound Waves in Fluids (3/3)

Problem solving:

- 1 State the Newton's second law for non viscous fluids (Euler's equation).
- 2 The experience shows that if pressure exerted is small, the deformation is proportional to the pressure, with a proportionality coefficient χ_s called compressibility:
- 3 Combine the preceding results in order to obtain the wave equation for sound waves.

$$\frac{\partial u}{\partial x} = -\chi_s p(x, t)$$

Summary

$$\frac{\partial^2 u}{\partial x^2} = \frac{1}{c^2} \frac{\partial^2 u}{\partial t^2}$$

with $c = \sqrt{\frac{1}{\rho \chi_s}}$, ρ : density ($\text{kg} \cdot \text{m}^{-3}$) and χ_s : compressibility (Pa^{-1})

The general solution of the equation is: $u = u_1(t - \frac{x}{c}) + u_2(t + \frac{x}{c})$

Propagation of Sound Waves in Fluids (3/3)

Problem solving:

- 1 State the Newton's second law for non viscous fluids (Euler's equation).
- 2 The experience shows that if pressure exerted is small, the deformation is proportional to the pressure, with a proportionality coefficient χ_s called compressibility:
- 3 Combine the preceding results in order to obtain the wave equation for sound waves.

$$\frac{\partial u}{\partial x} = -\chi_s p(x, t)$$

Summary

$$\frac{\partial^2 u}{\partial x^2} = \frac{1}{c^2} \frac{\partial^2 u}{\partial t^2}$$

with $c = \sqrt{\frac{1}{\rho \chi_s}}$, ρ : density ($\text{kg} \cdot \text{m}^{-3}$) and χ_s : compressibility (Pa^{-1})

The general solution of the equation is: $u = u_1(t - \frac{x}{c}) + u_2(t + \frac{x}{c})$

Otherwise it makes it possible to show that:

$$\frac{\partial}{\partial x} \left(\frac{\partial p}{\partial x} \right) \rightarrow \frac{\partial^2 p}{\partial x^2} = -\rho \frac{\partial^2 v}{\partial t \partial x}$$

Propagation of Sound Waves in Fluids (3/3)

Problem solving:

- 1 State the Newton's second law for non viscous fluids (Euler's equation).
- 2 The experience shows that if pressure exerted is small, the deformation is proportional to the pressure, with a proportionality coefficient χ_s called compressibility:

$$\frac{\partial u}{\partial x} = -\chi_s p(x, t)$$

- 3 Combine the preceding results in order to obtain the wave equation for sound waves.

Summary

$$\frac{\partial^2 u}{\partial x^2} = \frac{1}{c^2} \frac{\partial^2 u}{\partial t^2}$$

with $c = \sqrt{\frac{1}{\rho \chi_s}}$, ρ : density ($\text{kg} \cdot \text{m}^{-3}$) and χ_s : compressibility (Pa^{-1})

The general solution of the equation is: $u = u_1(t - \frac{x}{c}) + u_2(t + \frac{x}{c})$

Otherwise it makes it possible to show that:

$$\begin{aligned}\frac{\partial}{\partial x} \left(\frac{\partial p}{\partial x} \right) &\rightarrow \frac{\partial^2 p}{\partial x^2} = -\rho \frac{\partial^2 v}{\partial t \partial x} \\ \frac{\partial}{\partial t} \left(\frac{\partial}{\partial t} \left(\frac{\partial u}{\partial x} \right) \right) &\rightarrow \frac{\partial^2 v}{\partial x \partial t} = -\chi_s \frac{\partial^2 p}{\partial t^2}\end{aligned}$$

Propagation of Sound Waves in Fluids (3/3)

Problem solving:

- 1 State the Newton's second law for non viscous fluids (Euler's equation).
- 2 The experience shows that if pressure exerted is small, the deformation is proportional to the pressure, with a proportionality coefficient χ_s called compressibility:

$$\frac{\partial u}{\partial x} = -\chi_s p(x, t)$$

- 3 Combine the preceding results in order to obtain the wave equation for sound waves.

Summary

$$\frac{\partial^2 u}{\partial x^2} = \frac{1}{c^2} \frac{\partial^2 u}{\partial t^2}$$

with $c = \sqrt{\frac{1}{\rho \chi_s}}$, ρ : density ($\text{kg} \cdot \text{m}^{-3}$) and χ_s : compressibility (Pa^{-1})

The general solution of the equation is: $u = u_1(t - \frac{x}{c}) + u_2(t + \frac{x}{c})$

Otherwise it makes it possible to show that:

$$\begin{aligned}\frac{\partial}{\partial x} \left(\frac{\partial p}{\partial x} \right) &\rightarrow \frac{\partial^2 p}{\partial x^2} = -\rho \frac{\partial^2 v}{\partial t \partial x} \\ \frac{\partial}{\partial t} \left(\frac{\partial}{\partial t} \left(\frac{\partial u}{\partial x} \right) \right) &\rightarrow \frac{\partial^2 v}{\partial x \partial t} = -\chi_s \frac{\partial^2 p}{\partial t^2}\end{aligned}$$

$$\frac{\partial^2 p}{\partial x^2} = \frac{1}{c^2} \frac{\partial^2 p}{\partial t^2}$$